David Kirkpatrick

June 29, 2012

Just in time …

Filed under: et.al., Science — Tags: , , , — David Kirkpatrick @ 5:04 pm

… for the weekend (and the 4th of July), good news for all the drinkers out there.

From the Medical Press link:

A new study led by University of Pittsburgh researchers reveals that moderate amounts of alcohol–consumed in a social setting–can enhance positive emotions and social bonding and relieve negative emotions among those drinking.

June 4, 2010

Monkey controls robotic arm with its mind

Filed under: Science, Technology — Tags: , , , , , — David Kirkpatrick @ 6:36 pm

Via KurzweilAI.net — Very promising research in many ways and for a whole host of future applications. Pretty amazing video.

Advanced Robotic Arm Controlled by Monkey’s Thoughts
PhysOrg.com, June 3, 2010

Researchers at the University of Pittsburgh have taught a monkey to use its thoughts to control an advanced robotic arm with seven degrees of freedom and perform elaborate and precise maneuvers with it.

Sensors implanted in the hand and arm areas of its motor cortex send data to a computer that translates the patterns into commands that control the robotic arm.

Researchers hope to one day be able to use the researchto engineer and operate advanced prosthetics in a natural way to help paralyzed people live a close to normal life.

Read Original Article>>

April 6, 2010

Nanotech and medicine

New research on how carbon nanotubes may be used in medical applications.

The release:

[PRESS RELEASE, 5 April 2010] A team of Swedish and American scientists has shown for the first time that carbon nanotubes can be broken down by an enzyme – myeloperoxidase (MPO) – found in white blood cells. Their discoveries are presented in Nature Nanotechnology and contradict what was previously believed, that carbon nanotubes are not broken down in the body or in nature. The scientists hope that this new understanding of how MPO converts carbon nanotubes into water and carbon dioxide can be of significance to medicine.

“Previous studies have shown that carbon nanotubes could be used for introducing drugs or other substances into human cells,” says Bengt Fadeel, associate professor at the Swedish medical university Karolinska Institutet. “The problem has been not knowing how to control the breakdown of the nanotubes, which can caused unwanted toxicity and tissue damage. Our study now shows how they can be broken down biologically into harmless components.”

Carbon nanotubes are a material consisting of a single layer of carbon atoms rolled into a tube with a diameter of only a couple of nanometres (1 nanometer = 1 billionth of a metre) and a length that can range from tens of nanometres up to several micrometers. Carbon nanotubes are lighter and stronger than steel, and have exceptional heat-conductive and electrical properties. They are manufactured on an industrial scale, mainly for engineering purposes but also for some consumer products.

Carbon nanotubes were once considered biopersistent in that they did not break down in body tissue or in nature. In recent years, research has shown that laboratory animals exposed to carbon nanotubes via inhalation or through injection into the abdominal cavity develop severe inflammation. This and the tissue changes (fibrosis) that exposure causes lead to impaired lung function and perhaps even to cancer. For example, a year or two ago, alarming reports by other scientists suggested that carbon nanotubes are very similar to asbestos fibres, which are themselves biopersistent and which can cause lung cancer (mesothelioma) in humans a considerable time after exposure.

This current study thus represents a breakthrough in nanotechnology and nanotoxicology, since it clearly shows that endogenous MPO can break down carbon nanotubes. This enzyme is expressed in certain types of white blood cell (neutrophils), which use it to neutralise harmful bacteria. Now, however, the researchers have found that the enzyme also works on carbon nanotubes, breaking them down into water and carbon dioxide. The researchers also showed that carbon nanotubes that have been broken down by MPO no longer give rise to inflammation in mice.

“This means that there might be a way to render carbon nanotubes harmless, for example in the event of an accident at a production plant,” says Dr Fadeel. “But the findings are also relevant to the future use of carbon nanotubes for medical purposes.”

The study was led by researchers at Karolinska Institutet, the University of Pittsburgh and the National Institute for Occupational Safety and Health (NIOSH), and was financed in part through grants from the National Institutes of Health (NIH) and the Seventh Framework Programme of the European Commission. The work was conducted as part of the NANOMMUNE project, which is coordinated by associate professor Bengt Fadeel of the Institute of Environmental Medicine, Karolinska Institutet, and which comprises a total of thirteen research groups in Europe and the USA.

December 17, 2008

Clean carbon nanotube clean-up

Studies like this ought to allay some of the nanotech fears out there.

The release:

Pitt Researchers Create Nontoxic Clean-up Method for Common, Potentially Toxic Nano Materials

Horseradish enzyme biodegrades carbon nanotubes increasingly used in products, from electronics to plastics

PITTSBURGH-University of Pittsburgh researchers have developed the first natural, nontoxic method for biodegrading carbon nanotubes, a finding that could help diminish the environmental and health concerns that mar the otherwise bright prospects of the super-strong materials commonly used in products, from electronics to plastics.

A Pitt research team has found that carbon nanotubes deteriorate when exposed to the natural enzyme horseradish peroxidase (HRP), according to a report published recently in “Nano Letters” coauthored by Alexander Star, an assistant professor of chemistry in Pitt’s School of Arts and Sciences, and Valerian Kagan, a professor and vice chair of the Department of Environmental and Occupational Health in Pitt’s Graduate School of Public Health. These results open the door to further development of safe and natural methods-with HRP or other enzymes-of cleaning up carbon nanotube spills in the environment and the industrial or laboratory setting.

Carbon nanotubes are one-atom thick rolls of graphite 100,000 times smaller than a human hair yet stronger than steel and excellent conductors of electricity and heat. They reinforce plastics, ceramics, or concrete; conduct electricity in electronics or energy-conversion devices; and are sensitive chemical sensors, Star said. (Star created an early-detection device for asthma attacks wherein carbon nanotubes detect minute amounts of nitric oxide preceding an attack. See link below.)

“The many applications of nanotubes have resulted in greater production of them, but their toxicity remains controversial,” Star said. “Accidental spills of nanotubes are inevitable during their production, and the massive use of nanotube-based materials could lead to increased environmental pollution. We have demonstrated a nontoxic approach to successfully degrade carbon nanotubes in environmentally relevant conditions.”

The team’s work focused on nanotubes in their raw form as a fine, graphite-like powder, Kagan explained. In this form, nanotubes have caused severe lung inflammation in lab tests. Although small, nanotubes contain thousands of atoms on their surface that could react with the human body in unknown ways, Kagan said. Both he and Star are associated with a three-year-old Pitt initiative to investigate nanotoxicology.

“Nanomaterials aren’t completely understood. Industries use nanotubes because they’re unique-they are strong, they can be used as semiconductors. But do these features present unknown health risks? The field of nanotoxicology is developing to find out,” Kagan said. “Studies have shown that they can be dangerous. We wanted to develop a method for safely neutralizing these very small materials should they contaminate the natural or working environment.”

To break down the nanotubes, the team exposed them to a solution of HRP and a low concentration of hydrogen peroxide at 4 degrees Celcius (39 degrees Fahrenheit) for 12 weeks. Once fully developed, this method could be administered as easily as chemical clean-ups in today’s labs, Kagan and Star said.

###
12/16/08/tmw