David Kirkpatrick

September 10, 2010

Deceptive robots

Via KurzweilAI.net — Not too sure if I like this idea. Seems like we’re already heading down the path of breaking Asimov’s robotic laws with a lot of milbots in development and practice.

From the link:

We have developed  algorithms that allow a robot to determine whether it should deceive a human or other intelligent machine and we have designed techniques that help the robot select the best deceptive strategy to reduce its chance of being discovered,” said Ronald Arkin, a Regents professor in the Georgia Tech School of Interactive Computing.

The results of robot experiments and theoretical and cognitive deception modeling were published online on September 3 in the International Journal of Social Robotics. Because the researchers explored the phenomenon of robot deception from a general perspective, the study’s results apply to robot-robot and human-robot interactions. This research was funded by the Office of Naval Research.

In the future, robots capable of deception may be valuable for several different areas, including military and search and rescue operations. A search and rescue robot may need to deceive in order to calm or receive cooperation from a panicking victim. Robots on the battlefield with the power of deception will be able to successfully hide and mislead the enemy to keep themselves and valuable information safe.

“Most social robots will probably rarely use deception, but it’s still an important tool in the robot’s interactive arsenal because robots that recognize the need for deception have advantages in terms of outcome compared to robots that do not recognize the need for deception,” said the study’s co-author, Alan Wagner, a research engineer at the Georgia Tech Research Institute.

July 3, 2010

Toward quantum computing

This news comes from the University of Maryland offering another advancement toward a quantum computer — something that is ways off yet — that involves nanotechnology.

The release:

UM Scientists Advance Quantum Computing & Energy Conversion Tech

COLLEGE PARK, Md. — Using a unique hybrid nanostructure, University of Maryland researchers have shown a new type of light-matter interaction and also demonstrated the first full quantum control of qubit spin within very tiny colloidal nanostructures (a few nanometers), thus taking a key step forward in efforts to create a quantum computer.

Published in the July 1 issue of Nature, their research builds on work by the same Maryland research team published in March in the journal Science (3-26-10). According to the authors and outside experts, the new findings further advance the promise these new nanostructures hold for quantum computing and for new, more efficient, energy generation technologies (such as photovoltaic cells), as well as for other technologies that are based on light-matter interactions like biomarkers.

“The real breakthrough is that we use a new technology from materials science to ‘shed light’ on light-matter interactions and related quantum science in ways that we believe will have important applications in many areas, particularly energy conversion and storage and quantum computing,” said lead researcher Min Ouyang, an assistant professor in the department of physics and in the university’s Maryland NanoCenter. “In fact, our team already is applying our new understanding of nanoscale light-matter interactions and advancement of precise control of nanostructures to the development of a new type of photovoltaic cell that we expect to be significantly more efficient at converting light to electricity than are current cells.”

Ouyang and the other members of the University of Maryland team — research scientist Jiatao Zhang, and students Kwan Lee and Yun Tang — have created a patent-pending process that uses chemical thermodynamics to produce, in solution, a broad range of different combination materials, each with a shell of structurally perfect mono-crystal semiconductor around a metal core. In the research published in this week’s Nature, the researchers used hybrid metal/semiconductor nanostructures developed through this process to experimentally demonstrate “tunable resonant coupling” between a plasmon (from metal core) and an exciton (from semiconductor shell), with a resulting enhancement of the Optical Stark Effect. This effect was discovered some 60 years ago in studies of the interaction between light and atoms that showed light can be applied to modify atomic quantum states.

Nanostructures, Large Advances
“Metal-semiconductor heteronanostructures have been investigated intensely in the last few years with the metallic components used as nanoscale antennas to couple light much more effectively into and out of semiconductor nanoscale, light-emitters,” said Garnett W. Bryant, leader of the Quantum Processes and Metrology Group in the Atomic Physics Division of the National Institute of Standards and Technology (NIST). “The research led Min Ouyang shows that a novel heteronanostructure with the semiconductor surrounding the metallic nanoantenna can achieve the same goals. Such structures are very simple and much easier to make than previously attempted, greatly opening up possibilities for application. Most importantly, they have demonstrated that the light/matter coupling can be manipulated to achieve coherent quantum control of the semiconductor nanoemitters, a key requirement for quantum information processing,” said Bryant, who is not involved with this research. Bryant also is a scientist in the Joint Quantum Institute, a leading center of quantum science research that is a partnership between NIST and the University of Maryland.

Ouyang and his colleagues agree that their new findings were made possible by their crystal-metal hybrid nanostructures, which offer a number of benefits over the epitaxial structures used for previous work. Epitaxy has been the principle way to create single crystal semiconductors and related devices. The new research highlights the new capabilities of these UM nanostructures, made with a process that avoids two key constraints of epitaxy — a limit on deposition semiconductor layer thickness and a rigid requirement for “lattice matching.”

The Maryland scientists note that, in addition to the enhanced capabilities of their hybrid nanostructures, the method for producing them doesn’t require a clean room facility and the materials don’t have to be formed in a vacuum, the way those made by conventional epitaxy do. “Thus it also would be much simpler and cheaper for companies to mass produce products based on our hybrid nanostructures,” Ouyang said.

UM: Addressing Big Issues, Exploring Big Ideas
Every day University of Maryland faculty and student researchers are making a deep impact on the scientific, technological, political, social, security and environmental challenges facing our nation and world. Working in partnership with federal agencies, and international and industry collaborators, they are advancing knowledge and solutions in a areas such as climate change, global security, energy, public health, information technology, food safety and security, and space exploration.

—————-

Schematic of hybrid core-shell growth process

“Tailoring light-matter-spin interactions in colloidal hetero-nanostructures” Jiatao Zhang, Yun Tang, Kwan Lee, Min Ouyang, Nature, July 1, 2010.

This work was supported by the Office of Naval Research, the National Science Foundation (NSF), and Beckman Foundation. Facility support was from Maryland Nanocenter and its Nanoscale Imaging, Spectroscopy, and Properties Laboratory, which is supported in part by the NSF as a Materials Research Science and Engineering Centers shared experiment facility.

May 26, 2010

Graphene as quantum dots

Nanoelectronics is a major — and important — field right now, and graphene and its cousin graphane are very important materials research components. Both of the nanomaterials are getting a lot of  hype, particularly graphene, but there’s far too much smoke for there not to be at least a little fire. It’s exciting to keep watch on the news to see the breakthroughs as they happen, and eventually cover real-world, market-ready uses for graphene and graphane.

The release:

Graphane yields new potential

Rice physicists dig theoretical wells to mine quantum dots

Graphane is the material of choice for physicists on the cutting edge of materials science, and Rice University researchers are right there with the pack – and perhaps a little ahead.

Researchers mentored by Boris Yakobson, a Rice professor of mechanical engineering and materials science and of chemistry, have discovered the strategic extraction of hydrogen atoms from a two-dimensional sheet of graphane naturally opens up spaces of pure graphene that look – and act – like quantum dots.

That opens up a new world of possibilities for an ever-shrinking class of nanoelectronics that depend on the highly controllable semiconducting properties of quantum dots, particularly in the realm of advanced optics.

The theoretical work by Abhishek Singh and Evgeni Penev, both postdoctoral researchers in co-author Yakobson’s group, was published online last week in the journal ACS Nano and will be on the cover of the print version in June. Rice was recently named the world’s No. 1 institution for materials science research by a United Kingdom publication.

Graphene has become the Flat Stanley of materials. The one-atom-thick, honeycomb-like form of carbon may be two-dimensional, but it seems to be everywhere, touted as a solution to stepping beyond the limits of Moore’s Law.

Graphane is simply graphene modified by hydrogen atoms added to both sides of the matrix, which makes it an insulator. While it’s still technically only a single atom thick, graphane offers great possibilities for the manipulation of the material’s semiconducting properties.

Quantum dots are crystalline molecules from a few to many atoms in size that interact with light and magnetic fields in unique ways. The size of a dot determines its band gap – the amount of energy needed to close the circuit – and makes it tunable to a precise degree. The frequencies of light and energy released by activated dots make them particularly useful for chemical sensors, solar cells, medical imaging and nanoscale circuitry.

Singh and Penev calculated that removing islands of hydrogen from both sides of a graphane matrix leaves a well with all the properties of quantum dots, which may also be useful in creating arrays of dots for many applications.

“We arrived at these ideas from an entirely different study of energy storage in a form of hydrogen adsorption on graphene,” Yakobson said. “Abhishek and Evgeni realized that this phase transformation (from graphene to graphane), accompanied by the change from metal to insulator, offers a novel palette for nanoengineering.”

Their work revealed several interesting characteristics. They found that when chunks of the hydrogen sublattice are removed, the area left behind is always hexagonal, with a sharp interface between the graphene and graphane. This is important, they said, because it means each dot is highly contained; calculations show very little leakage of charge into the graphane host material. (How, precisely, to remove hydrogen atoms from the lattice remains a question for materials scientists, who are working on it, they said.)

“You have an atom-like spectra embedded within a media, and then you can play with the band gap by changing the size of the dot,” Singh said. “You can essentially tune the optical properties.”

Along with optical applications, the dots may be useful in single-molecule sensing and could lead to very tiny transistors or semiconductor lasers, he said.

Challenges remain in figuring out how to make arrays of quantum dots in a sheet of graphane, but neither Singh nor Penev sees the obstacles as insurmountable.

“We think the major conclusions in the paper are enough to excite experimentalists,” said Singh, who will soon leave Rice to become an assistant professor at the Indian Institute of Science in Bangalore. “Some are already working in the directions we explored.”

“Their work is actually supporting what we’re suggesting, that you can do this patterning in a controlled way,” Penev said.

When might their calculations bear commercial fruit? “That’s a tough question,” Singh said. “It won’t be that far, probably — but there are challenges. I don’t know that we can give it a time frame, but it could happen soon.”

###

Funding from the Office of Naval Research supported the work. Computations were performed at the Department of Defense Supercomputing Resource Center at the Air Force Research Laboratory.

June 12, 2009

Assembly with graphene

Interesting research on the properties of one of the more exciting nanotech materials out there.

The release:

Penn materials scientist finds plumber’s wonderland on graphene

IMAGE: This is an electron micrograph showing the formation of interconnected carbon nanostructures on a graphene substrate, which may be harnessed to make future electronic devices.

Click here for more information. 

PHILADELPHIA –- Engineers from the University of Pennsylvania, Sandia National Laboratories and Rice University have demonstrated the formation of interconnected carbon nanostructures on graphene substrate in a simple assembly process that involves heating few-layer graphene sheets to sublimation using electric current that may eventually lead to a new paradigm for building integrated carbon-based devices.

Curvy nanostructures such as carbon nanotubes and fullerenes have extraordinary properties but are extremely challenging to pick up, handle and assemble into devices after synthesis. Penn materials scientist Ju Li and Sandia scientist Jianyu Huang have come up with a novel idea to construct curvy nanostructures directly integrated on graphene, taking advantage of the fact that graphene, an atomically thin two-dimensional sheet, bends easily after open edges have been cut on it, which can then fuse with other open edges permanently, like a plumber connecting metal fittings.

The “knife” and “welding torch” used in the experiments, which were performed inside an electron microscope, was electrical current from a Nanofactory scanning probe, generating up to 2000°C of heat. Upon applying the electrical current to few-layer graphene, they observed the in situ creation of many interconnected, curved carbon nanostructures, such as “fractional nanotube”-like graphene bi-layer edges, or BLEs; BLE rings on graphene equivalent to “anti quantum-dots”; and nanotube-BLE assembly connecting multiple layers of graphene.

Remarkably, researchers observed that more than 99 percent of the graphene edges formed during sublimation were curved BLEs rather than flat monolayer edges, indicating that BLEs are the stable edges in graphene, in agreement with predictions based on symmetry considerations and energetic calculations. Theory also predicts these BLEs, or “fractional nanotubes,” possess novel properties of their own and may find applications in devices.

The study is published in the current issue of the journal Proceedings of the National Academy of Sciences. Short movies of the fabrication of these nanostructures can be viewed at www.youtube.com/user/MaterialsTheory.

Li and Huang observed the creation of these interconnected carbon nanostructures using the heat of electric current and a high-resolution transmission electron microscope. The current, once passed through the graphene layers, improved the crystalline quality and surface cleanness of the graphene as well, both important for device fabrication.

The sublimation of few-layer graphene, such as a 10-layer stack, is advantageous over the sublimation of monolayers. In few-layer graphene, layers spontaneously fuse together forming nanostructures on top of one or two electrically conductive, extended, graphene sheets.

During heating, both the flat graphene sheets and the self-wrapping nanostructures that form, like bilayer edges and nanotubes, have unique electronic properties important for device applications. The biggest obstacle for engineers has been wrestling control of the structure and assembly of these nanostructures to best exploit the properties of carbon. The discoveries of self-assembled novel carbon nanostructures may circumvent the hurdle and lead to new approach of graphene-based electronic devices.

Researchers induced the sublimation of multilayer graphene by Joule-heating, making it thermodynamically favorable for the carbon atoms at the edge of the material to escape into the gas phase, leaving freshly exposed edges on the solid graphene. The remaining graphene edges curl and often welded together to form BLEs. Researchers attribute this behavior to nature’s driving force to reduce capillary energy, dangling bonds on the open edges of monolayer graphene, at the cost of increased bending energy.

“This study demonstrates it is possible to make and integrate curved nanostructures directly on flat graphene, which is extended and electrically conducting,” said Li, associate professor in the Department of Materials Science and Engineering in Penn’s School of Engineering and Applied Science. “Furthermore, it demonstrates that multiple graphene sheets can be intentionally interconnected. And the quality of the plumbing is exceptionally high, better than anything people have used for electrical contacts with carbon nanotubes so far. We are currently investigating the fundamental properties of graphene bi-layer edges, BLE rings and nanotube-BLE junctions.”

 

###

 

The study was performed by Li and Liang Qi of Penn, Jian Yu Huang and Ping Lu of the Center for Integrated Nanotechnologies at Sandia and Feng Ding and Boris I. Yakobson of the Department of Mechanical Engineering and Materials Science at Rice.

It was supported by the National Science Foundation, the Air Force Office of Scientific Research, the Honda Research Institute, the Department of Energy and the Office of Naval Research.

March 29, 2009

Play video games, improve your vision

Seems counterintuitive, but check out this study. Video gamers (especially kids), here’s some ammo against the argument your ruining your eyes playing hours of Halo.

The release from today:

Action video games improve vision

Ability to perceive changes in shades of gray improves up to 58 percent

IMAGE: This is a Pelli-Robson chart showing decreasing contrast from upper left to lower right. True contrast varies between monitors.

Click here for more information. 

Video games that involve high levels of action, such as first-person-shooter games, increase a player’s real-world vision, according to research in today’s Nature Neuroscience.

The ability to discern slight differences in shades of gray has long been thought to be an attribute of the human visual system that cannot be improved. But Daphne Bavelier, professor of brain and cognitive sciences at the University of Rochester, has discovered that very practiced action gamers become 58 percent better at perceiving fine differences in contrast.

“Normally, improving contrast sensitivity means getting glasses or eye surgery—somehow changing the optics of the eye,” says Bavelier. “But we’ve found that action video games train the brain to process the existing visual information more efficiently, and the improvements last for months after game play stopped.”

The finding builds on Bavelier’s past work that has shown that action video games decrease visual crowding and increases visual attention. Contrast sensitivity, she says, is the primary limiting factor in how well a person can see. Bavelier says that the findings show that action video game training may be a useful complement to eye-correction techniques, since game training may teach the visual cortex to make better use of the information it receives.

IMAGE: This is an animation illustrating the difference between 38 percent contrast and 60 percent contrast — the approximate difference perceived by non-action gamers and action gamers.

Click here for more information. 

To learn whether high-action games could affect contrast sensitivity, Bavelier, in collaboration with graduate student Renjie Li and colleagues Walt Makous, professor of brain and cognitive sciences at the University of Rochester, and Uri Polat, professor at the Eye Institute at Tel Aviv University, tested the contrast sensitivity function of 22 students, then divided them into two groups: One group played the action video games “Unreal Tournament 2004” and “Call of Duty 2.” The second group played “The Sims 2,” which is a richly visual game, but does not include the level of visual-motor coordination of the other group’s games. The volunteers played 50 hours of their assigned games over the course of 9 weeks. At the end of the training, the students who played the action games showed an average 43% improvement in their ability to discern close shades of gray—close to the difference she had previously observed between game players and non-game players—whereas the Sims players showed none.

IMAGE: This is a photo illustrating 58 percent better contrast perception versus “regular ” contrast perception.

Click here for more information. 

“To the best of our knowledge, this is the first demonstration that contrast sensitivity can be improved by simple training,” says Bavelier. “When people play action games, they’re changing the brain’s pathway responsible for visual processing. These games push the human visual system to the limits and the brain adapts to it, and we’ve seen the positive effect remains even two years after the training was over.”

Bavelier says that the findings suggest that despite the many concerns about the effects of action video games and the time spent in front of a computer screen, that time may not necessarily be harmful, at least for vision.

Bavelier is now taking what she has learned with her video game research and collaborating with a consortium of researchers to look into treatments for amblyopia, a problem caused by poor transmission of the visual image to the brain.

 

###

 

This research was funded by the National Eye Institute and the Office of Naval Research.

January 30, 2009

Stanford researchers write in nanoscale

And reclaim their lost title for writing in the “world’s smallest letters.”

The release:

Stanford writes in world’s smallest letters

Storing information in electron waves

IMAGE: This is an electron wave quantum hologram displaying the initials “SU ” of Stanford University. The yellow area is a copper surface. The holes in the copper are molecules of carbon monoxide….

Click here for more information. 

Stanford researchers have reclaimed bragging rights for creating the world’s smallest writing, a distinction the university first gained in 1985 and lost in 1990.

How small is the writing? The letters in the words are assembled from subatomic sized bits as small as 0.3 nanometers, or roughly one third of a billionth of a meter.

The researchers encoded the letters “S” and “U” (as in Stanford University) within the interference patterns formed by quantum electron waves on the surface of a sliver of copper. The wave patterns even project a tiny hologram of the data, which can be viewed with a powerful microscope.

IMAGE: These are physics grad student Chris Moon (left), Physics Professor Hari Manoharan and physics grad student Laila Mattos worked on the subatomic writing project.

Click here for more information. 

“We miniaturized their size so drastically that we ended up with the smallest writing in history,” said Hari Manoharan, the assistant professor of physics who directed the work of physics graduate student Chris Moon and other researchers.

The quest for small writing has played a role in the development of nanotechnology for 50 years, beginning decades before “nano” became a household word. During a now-legendary talk in 1959, the remarkable physicist Richard Feynman argued that there were no physical barriers preventing machines and circuitry from being shrunk drastically. He called his talk “There’s Plenty of Room at the Bottom.”

Feynman offered a $1,000 prize for anyone who could find a way to rewrite a page from an ordinary book in text 25,000 times smaller than the usual size (a scale at which the entire contents of the Encyclopedia Britannica would fit on the head of a pin). He held onto his money until 1985, when he mailed a check to Stanford grad student Tom Newman, who, working with electrical engineering Professor Fabian Pease, used electron beam lithography to engrave the opening page of Dickens’ A Tale of Two Cities in such small print that it could be read only with an electron microscope.

That record held until 1990, when researchers at a certain computer company famously spelled out the letters IBM by arranging 35 individual xenon atoms.

Now, in a paper published online in the journal Nature Nanotechnology, the Stanford researchers describe how they have created letters 40 times smaller than the original prize-winning effort and more than four times smaller than the IBM initials. (http://www.youtube.com/watch?v=j3QQJEHuefQ)

Working in a vibration-proof basement lab in the Varian Physics Building, Manoharan and Moon began their writing project with a scanning tunneling microscope, a device that not only sees objects at a very small scale but also can be used to move around individual atoms. The Stanford team used it to drag single carbon monoxide molecules into a desired pattern on a copper chip the size of a fingernail.

On the two-dimensional surface of the copper, electrons zip around, behaving as both particles and waves, bouncing off the carbon monoxide molecules the way ripples in a shallow pond might interact with stones placed in the water.

The ever-moving waves interact with the molecules and with each other to form standing “interference patterns” that vary with the placement of the molecules.

By altering the arrangement of the molecules, the researchers can create different waveforms, effectively encoding information for later retrieval. To encode and read out the data at unprecedented density, the scientists have devised a new technology, Electronic Quantum Holography.

In a traditional hologram, laser light is shined on a two-dimensional image and a ghostly 3-D object appears. In the new holography, the two-dimensional “molecular holograms” are illuminated not by laser light but by the electrons that are already in the copper in great abundance. The resulting “electronic object” can be read with the scanning tunneling microscope.

Several images can be stored in the same hologram, each created at a different electron wavelength. The researchers read them separately, like stacked pages of a book. The experience, Moon said, is roughly analogous to an optical hologram that shows one object when illuminated with red light and a different object in green light.

For Manoharan, the true significance of the work lies in storing more information in less space. “How densely can you encode information on a computer chip? The assumption has been that basically the ultimate limit is when one atom represents one bit, and then there’s no more room—in other words, that it’s impossible to scale down below the level of atoms.

“But in this experiment we’ve stored some 35 bits per electron to encode each letter. And we write the letters so small that the bits that comprise them are subatomic in size. So one bit per atom is no longer the limit for information density. There’s a grand new horizon below that, in the subatomic regime. Indeed, there’s even more room at the bottom than we ever imagined.”

In addition to Moon and Manoharan, authors of the Nature Nanotechnologypaper, “Quantum Holographic Encoding in a Two-Dimensional Electron Gas,” are graduate students Laila Mattos, physics; Brian Foster, electrical engineering; and Gabriel Zeltzer, applied physics.

The research was supported by the Department of Energy through SLAC National Accelerator Laboratory and the Stanford Institute for Materials and Energy Science (SIMES), the Office of Naval Research, the National Science Foundation and the Stanford-IBM Center for Probing the Nanoscale.

 

###

 

RELEVANT WEB URLS:

Video: The World’s Smallest Writing http://www.youtube.com/watch?v=j3QQJEHuefQ

Stanford News Service story: Reading the fine print takes on a new meaning http://news-service.stanford.edu/news/2009/january28/small-012809.html

MANOHARAN LAB http://mota.stanford.edu

RICHARD FEYNMAN’S 1959 NANOTECHNOLOGY TALK http://www.its.caltech.edu/~feynman/plenty.html

NATURENEWS STORY http://www.nature.com/news/2009/090124/full/news.2009.54.html

December 9, 2008

December media tips from Oak Ridge National Laboratory

Here’s the monthly group of story pitches from Oak Ridge.

The release:

December 2008 Story Tips

(Story Tips Archive)

Story ideas from the Department of Energy’s Oak Ridge National Laboratory. To arrange for an interview with a researcher, please contact the Communications and External Relations staff member identified at the end of each tip.

Climate—Spotlight on CO2 . . .

Data from NASA’s Orbiting Carbon Observatory combined with computational power and tools provided by ORNL researchers will result in unprecedented levels of information about atmospheric carbon dioxide. The satellite, scheduled for launch in mid-January, will collect precise global measurements of CO2 and transmit that information to Earth. Using version 5 of the Goddard Earth Observing System model (GEOS-5), developed by a team that includes ORNL’s David Erickson, scientists will with great precision be able to see sources and sinks of atmospheric CO2. The combination of Jaguar’s massive computing power – 1.64 petaflops per second (peak) – and scientific interpretations aided by NASA satellite data should for the first time give scientists a clear picture of where carbon is being produced and where it ultimately ends up. Funding is provided by NASA and the Department of Energy’s Office of Biological and Environmental Research. 

Energy Efficiency—Heat to power . . .

Combined heat and power (CHP) technologies, which capture and reuse waste heat from electric or mechanical power, account for about 9 percent of annual U.S. power generation. Roughly doubling that capacity could cut projected U.S. carbon dioxide emissions by 60 percent by 2030– the equivalent to taking 45 million cars off the road — an Oak Ridge National Laboratory study shows. Current CHP systems made up of gas turbines, fuel cells or engines combined with heat exchangers and chillers cut 1.8 billion Btu of fuel consumption and 266 million tons of CO2 emissions compared to traditional separate production of electricity and thermal energy. In addition to the 60 percent CO2 reduction, raising CHP generating capacity to 20 percent would create a million new jobs; $234 billion in new U.S. investments; and fuel savings equivalent to nearly half the total energy now consumed by U.S. households. The ORNL report on “Combined Heat and Power: Effective Energy Solutions for a Sustainable Future” is sponsored by DOE’s Office of Energy Efficiency and Renewable Energy Industrial Technologies Program.

 

Isotopes—Banner year . . .

Californium-252 and actinium-225 generated half of the $5 million in sales for the Department of Energy’s National Isotope Data Center at ORNL in fiscal year 2008. That amount represents a $1 million increase from 2007. Californium-252 — used as a start-up source in nuclear reactors, in analyzers for the coal and concrete industries and in detectors for homeland security — produced $2 million in sales. Actinium-225, an isotope extracted as a product of the decay of thorium-229 and used in radiotherapy trials for various cancers, including ovarian, lung and myeloid leukemia, accounted for more than $500,000. The Californium-252 is produced at ORNL’s High Flux Isotope Reactor in conjunction with the lab’s Radiochemical Engineering Development Center. ORNL offers a wide range of capabilities in isotope production and irradiation tests for materials research. Beyond these contributions, HFIR, supported by the Office of Science, is a world leader in producing neutrons for materials studies.

 

Sensors—On the prowl . . .

Mathematics and sensors come together in some new ways to form a powerful tool for combating terrorism, piracy and the transport of drugs. In a project that combines resources at ORNL and Clemson University, researchers and students are using something called Level 3 sensor fusion to identify and predict the behavior of ships, tanks, people and more. “This means we not only know where they are, but we can make educated guesses about what they’re going to do and when,” said Chris Griffin of ORNL’s Computational Sciences & Engineering Division. The system, called LEPERD – Learning and Prediction for Enhanced Readiness and Decision Making – involves a lot of new math and uses techniques from pattern recognition, learning theory, statistical analysis and control theory. Funding is provided by the Office of Naval Research.