David Kirkpatrick

September 2, 2010

NASA’s going to the sun

And announcing the first five solar missions. No need to rush and book reservations, though, since this mission is a good eight years from launch.

News hot from today’s inbox.

The release:

NASA Selects Investigations for First Mission to Encounter the Sun

WASHINGTON, Sept. 2 /PRNewswire-USNewswire/ — NASA has begun development of a mission to visit and study the sun closer than ever before. The unprecedented project, named Solar Probe Plus, is slated to launch no later than 2018.

(Logo: http://photos.prnewswire.com/prnh/20081007/38461LOGO)
(Logo: http://www.newscom.com/cgi-bin/prnh/20081007/38461LOGO)

The small car-sized spacecraft will plunge directly into the sun’s atmosphere approximately four million miles from our star’s surface. It will explore a region no other spacecraft ever has encountered. NASA has selected five science investigations that will unlock the sun’s biggest mysteries.

“The experiments selected for Solar Probe Plus are specifically designed to solve two key questions of solar physics —  why is the sun’s outer atmosphere so much hotter than the sun’s visible surface and what propels the solar wind that affects Earth and our solar system?” said Dick Fisher, director of NASA’s Heliophysics Division in Washington. “We’ve been struggling with these questions for decades and this mission should finally provide those answers.”

As the spacecraft approaches the sun, its revolutionary carbon-composite heat shield must withstand temperatures exceeding 2550 degrees Fahrenheit and blasts of intense radiation. The spacecraft will have an up close and personal view of the sun enabling scientists to better understand, characterize and forecast the radiation environment for future space explorers.

NASA invited researchers in 2009 to submit science proposals. Thirteen were reviewed by a panel of NASA and outside scientists. The total dollar amount for the five selected investigations is approximately $180 million for preliminary analysis, design, development and tests.

The selected proposals are:

— Solar Wind Electrons Alphas and Protons Investigation: principal investigator, Justin C. Kasper, Smithsonian Astrophysical Observatory in Cambridge, Mass. This investigation will specifically count the most abundant particles in the solar wind — electrons, protons and helium ions — and measure their properties. The investigation also is designed to catch some of the particles in a special cup for direct analysis.

— Wide-field Imager: principal investigator, Russell Howard, Naval Research Laboratory in Washington. This telescope will make 3-D images of the sun’s corona, or atmosphere. The experiment actually will see the solar wind and provide 3-D images of clouds and shocks as they approach and pass the spacecraft. This investigation complements instruments on the spacecraft providing direct measurements by imaging the plasma the other instruments sample.

— Fields Experiment: principal investigator, Stuart Bale, University of California Space Sciences Laboratory in Berkeley, Calif. This investigation will make direct measurements of electric and magnetic fields, radio emissions, and shock waves that course through the sun’s atmospheric plasma. The experiment also serves as a giant dust detector, registering voltage signatures when specks of space dust hit the spacecraft’s antenna.

— Integrated Science Investigation of the Sun: principal investigator, David McComas of the Southwest Research Institute in San Antonio. This investigation consists of two instruments that will take an inventory of elements in the sun’s atmosphere using a mass spectrometer to weigh and sort ions in the vicinity of the spacecraft.

— Heliospheric Origins with Solar Probe Plus: principal investigator, Marco Velli of NASA’s Jet Propulsion Laboratory in Pasadena, Calif. Velli is the mission’s observatory scientist, responsible for serving as a senior scientist on the science working group. He will provide an independent assessment of scientific performance and act as a community advocate for the mission.

“This project allows humanity’s ingenuity to go where no spacecraft has ever gone before,” said Lika Guhathakurta, Solar Probe Plus program scientist at NASA Headquarters, in Washington. “For the very first time, we’ll be able to touch, taste and smell our sun.”

The Solar Probe Plus mission is part of NASA’s Living with a Star Program. The program is designed to understand aspects of the sun and Earth’s space environment that affect life and society. The program is managed by NASA’S Goddard Space Flight Center in Greenbelt, Md., with oversight from NASA’s Science Mission Directorate’s Heliophysics Division. The Johns Hopkins University Applied Physics Laboratory in Laurel, Md., is the prime contractor for the spacecraft.

For more information about the Solar Probe Plus mission, visit:

For more information about the Living with a Star Program, visit:

Photo:  http://www.newscom.com/cgi-bin/prnh/20081007/38461LOGO
PRN Photo Desk photodesk@prnewswire.com
Source: NASA

Web Site:  http://www.nasa.gov/

February 25, 2010

Beautiful space image — the Small Magellanic Cloud

Just incredible

From the link:

Today ESO has released a dramatic new image of NGC 346, the brightest star-forming region in our neighbouring galaxy, the Small Magellanic Cloud, 210 000 light-years away towards the constellation of Tucana (the Toucan). The light, wind and heat given off by massive stars have dispersed the glowing gas within and around this star cluster, forming a surrounding wispy nebular structure that looks like a cobweb. NGC 346, like other beautiful astronomical scenes, is a work in progress, and changes as the aeons pass. As yet more stars form from loose matter in the area, they will ignite, scattering leftover dust and gas, carving out great ripples and altering the face of this lustrous object.

NGC 346 spans approximately 200 light-years, a region of space about fifty times the distance between the Sun and its nearest stellar neighbours. Astronomers classify NGC 346 as an open cluster of stars, indicating that this stellar brood all originated from the same collapsed cloud of matter. The associated nebula containing this clutch of bright stars is known as an emission nebula, meaning that gas within it has been heated up by stars until the gas emits its own light, just like the neon gas used in electric store signs.

Many stars in NGC 346 are relatively young in cosmic terms with their births dating back only a few million years or so (eso0834). Powerful winds thrown off by a massive star set off this recent round of star birth by compressing large amounts of matter, the first critical step towards igniting new stars. This cloud of material then collapses under its own gravity, until some regions become dense and hot enough to roar forth as a brilliantly shining, nuclear fusion-powered furnace — a star, illuminating the residual debris of gas and dust. In sufficiently congested regions like NGC 346, with high levels of recent star birth, the result is a glorious, glowing vista for our telescopes to capture.

NGC 346 is in the Small Magellanic Cloud, a dwarf galaxy some 210 000 light-years away from Earth and in close proximity to our home, the much larger Milky Way Galaxy. Like its sister the Large Magellanic Cloud, the Small Magellanic Cloud is visible with the unaided eye from the southern hemisphere and has served as an extragalactic laboratory for astronomers studying the dynamics of star formation.

This particular image was obtained using the Wide Field Imager (WFI) instrument at the MPG/ESO 2.2-metre telescope at the La Silla Observatory in Chile. Images like this help astronomers chronicle star birth and evolution, while offering glimpses of how stellar development influences the appearance of the cosmic environment over time.

More information

ESO, the European Southern Observatory, is the foremost intergovernmental astronomy organisation in Europe and the world’s most productive astronomical observatory. It is supported by 14 countries: Austria, Belgium, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Portugal, Spain, Sweden, Switzerland and the United Kingdom. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope, the world’s most advanced visible-light astronomical observatory, and VISTA the largest survey telescope. ESO is the European partner of a revolutionary astronomical telescope ALMA, the largest astronomical project in existence. ESO is currently planning a 42-metre European Extremely Large optical/near-infrared Telescope, the E-ELT, which will become “the world’s biggest eye on the sky”.