David Kirkpatrick

December 18, 2010

Science magazine’s breakthroughs of 2010

Number one is the first quantum machine.

From the link:

Physicists Andrew Cleland and John Martinis from the University of California at Santa Barbara and their colleagues designed the machine—a tiny metal paddle of semiconductor, visible to the naked eye—and coaxed it into dancing with a quantum groove. First, they cooled the paddle until it reached its “ground state,” or the lowest energy state permitted by the laws of quantum mechanics (a goal long-sought by). Then they raised the widget’s energy by a single quantum to produce a purely quantum-mechanical state of motion. They even managed to put the gadget in both states at once, so that it literally vibrated a little and a lot at the same time—a bizarre phenomenon allowed by the weird rules of quantum mechanics.

and its publisher, AAAS, the nonprofit science society, have recognized this first quantum machine as the 2010 Breakthrough of the Year. They have also compiled nine other important scientific accomplishments from this past year into a top ten list, appearing in a special news feature in the journal’s 17 December 2010 issue. Additionally, Science news writers and editors have chosen to spotlight 10 “Insights of the Decade” that have transformed the landscape of science in the 21st Century.

“This year’s Breakthrough of the Year represents the first time that scientists have demonstrated quantum effects in the motion of a human-made object,” said Adrian Cho, a news writer for Science. “On a conceptual level that’s cool because it extends quantum mechanics into a whole new realm. On a practical level, it opens up a variety of possibilities ranging from new experiments that meld quantum control over light, electrical currents and motion to, perhaps someday, tests of the bounds of quantum mechanics and our sense of reality.”


May 1, 2010

Quantum computing news

I wouldn’t call this an astounding breakthrough, but sometimes a shift in focus — like this research into alternative materials for quantum computers — can lead to seismic changes in the field down the road.

The release:

UCSB scientists look beyond diamond for quantum computing

IMAGE: David Awschalom is a researcher at University of California – Santa Barbara.

Click here for more information.

(Santa Barbara, Calif.) –– A team of scientists at UC Santa Barbara that helped pioneer research into the quantum properties of a small defect found in diamonds has now used cutting-edge computational techniques to produce a road map for studying defects in alternative materials.

Their new research is published in the online edition of the Proceedings of the National Academy of Sciences (PNAS), and will soon be published in the print edition of the journal. The findings may enable new applications for semiconductors ––materials that are the foundation of today’s information technology. In particular, they may help identify alternative materials to use for building a potential quantum computer.

“Our results are likely to have an impact on experimental and theoretical research in diverse areas of science and technology, including semiconductor physics, materials science, magnetism, and quantum device engineering,” said David D. Awschalom, UCSB physics professor and one of two lead investigators on this project. “Ironically, while much of semiconductor technology is devoted to eliminating the defects that interfere with how today’s devices operate, these defects may actually be useful for future quantum technologies.”

IMAGE: Chris Van de Walle is a researcher at University of California – Santa Barbara.

Click here for more information.

According to PNAS, the researchers have developed a set of screening criteria to find specific atomic defects in solids that could act as quantum bits (qubits) in a potential quantum computer. As a point of reference, they use a system whose quantum properties they themselves have recently helped to discern, the NV or nitrogen-vacancy center defect in diamond. This defect, which the team has shown can act as a very fast and stable qubit at room temperature, consists of a stray nitrogen atom alongside a vacancy in the otherwise perfect stacking of carbon atoms in a diamond.

Electrons trapped at the defect’s center interact with light and microwaves in a predictable way, allowing information to be stored in and read out from the orientation of their quantum-mechanical spins.

The drawback to using diamond, however, is that the material is expensive and difficult to grow and process into chips. This raises the question of whether there may be defects in other materials that have similar properties and could perform equally well.

In this week’s publication, the researchers enumerate specific screening criteria to identify appropriate defects in materials that could be useful for building a quantum computer. Experimental testing of all the potential candidates might take decades of painstaking research, explained Awschalom. To address this problem, the UCSB group employed advanced computational methods to theoretically examine the characteristics of potential defect centers in many different materials, providing a sort of road map for future experiments.

UCSB’s Chris G. Van de Walle, professor of materials and one of the senior investigators on the project, remarked: “We tap into the expertise that we have accumulated over the years while examining ‘bad’ defects, and channel it productively into designing ‘good’ defects; i.e., those that have the necessary characteristics to equal or even outperform the NV center in diamond.” This expertise is backed up by advanced theoretical and computational models that enable the reliable prediction of the properties of defects, a number of which are proposed and examined in the paper.

Awschalom added: “We anticipate this work will stimulate additional collaborative activities among theoretical physicists and materials engineers to accelerate progress towards quantum computing based on semiconductors.”

Current computers are based on binary logic: each bit can be either “one” or “zero.” In contrast, each qubit in a quantum computer is continuously variable between these two states and hence offers infinitely more possibilities to be manipulated and combined with other qubits to produce a desired computational result. “It has been well established that, in theory, quantum computers can tackle some tasks that are completely beyond the capabilities of binary computers,” said Awschalom. “The challenge has been to identify real physical systems that can serve as qubits for future machines.”


November 22, 2009

Getting closer to quantum computing

The latest in quantum computing news:

UCSB physicists move 1 step closer to quantum computing

IMAGE: This is David Awschalom from the University of California — Santa Barbara.

Click here for more information.


(Santa Barbara, Calif.) –– Physicists at UC Santa Barbara have made an important advance in electrically controlling quantum states of electrons, a step that could help in the development of quantum computing. The work is published online today on the Science Express Web site.

The researchers have demonstrated the ability to electrically manipulate, at gigahertz rates, the quantum states of electrons trapped on individual defects in diamond crystals. This could aid in the development of quantum computers that could use electron spins to perform computations at unprecedented speed.

Using electromagnetic waveguides on diamond-based chips, the researchers were able to generate magnetic fields large enough to change the quantum state of an atomic-scale defect in less than one billionth of a second. The microwave techniques used in the experiment are analogous to those that underlie magnetic resonance imaging (MRI) technology.

The key achievement in the current work is that it gives a new perspective on how such resonant manipulation can be performed. “We set out to see if there is a practical limit to how fast we can manipulate these quantum states in diamond,” said lead author Greg Fuchs, a postdoctoral researcher at UCSB. “Eventually, we reached the point where the standard assumptions of magnetic resonance no longer hold, but to our surprise we found that we actually gained an increase in operation speed by breaking the conventional assumptions.”

While these results are unlikely to change MRI technology, they do offer hope for the nascent field of quantum computing. In this field, individual quantum states take on the role that transistors perform in classical computing.

IMAGE: This is postdoctoral researcher Greg Fuchs in the lab of UCSB’s Center for Spintronics and Quantum Computation.

Click here for more information.


“From an information technology standpoint, there is still a lot to learn about controlling quantum systems,” said David Awschalom, principal investigator and professor of physics, electrical and computer engineering at UCSB. “Still, it’s exciting to stand back and realize that we can already electrically control the quantum state of just a few atoms at gigahertz rates –– speeds comparable to what you might find in your computer at home.”






The work was performed at UCSB’s Center for Spintronics and Quantum Computation, directed by Awschalom. Co-authors on the paper include David. M. Toyli and F. Joseph Heremans, both of UCSB. Slava V. Dobrovitski of Ames Laboratory and Iowa State University contributed to the paper.

September 25, 2008

Nanotech process to improve computers

This nanoscale process will make computers smaller, faster and more efficient. Sounds good to me.

From the link:

Scientists at the University of California, Santa Barbara have made a major contribution to this field by designing a new nanotechnology that will ultimately help make computers smaller, faster, and more efficient. The new process is described in today’s Science Express, the online version of the journal Science.
For the first time, the UCSB scientists have created a way to make square, nanoscale, chemical patterns –– from the bottom up –– that may be used in the manufacture of integrated circuit chips as early as 2011. It is called block co-polymer lithography.

Five leading manufacturers, including Intel and IBM, helped fund the research at UCSB, along with the National Science Foundation and other funders. The university has already applied for patents on the new methods developed here, and it will retain ownership.

Atomic Force Microscope image of a square array of 15nm pores formed by the new technology.
Atomic Force Microscope image of a square array of 15nm pores formed by the new technology.

August 27, 2008

Clash of galactic titans

UC Santa Barbara astronomers used the Hubble and Chandra to discover a collision of galaxy clusters.

From the release:

Collision of galaxy clusters captured by astronomers

(Santa Barbara, Calif.) – Two UC Santa Barbara astronomers are part of a team that has made a stunning discovery using the Hubble Space Telescope and Chandra X-ray Observatory, it was announced today by the National Aeronautics and Space Administration.

The capture of a collision of galaxy clusters was made by a team led by Marusa Bradac, a postdoctoral researcher and Hubble fellow in UCSB’s Department of Physics. The international team also included Tommaso Treu, assistant professor of physics at UCSB.

“It is in our view an important step forward to understanding the properties of the mysterious dark matter,” Bradac said. “Dark matter makes up five times more matter in the universe than ordinary matter. This study confirms that we are dealing with a very different kind of matter, unlike anything that we are made of. And were able to study it in a very powerful collision of two clusters of galaxies.”

Below is the complete text of the press release issued today by NASA.

(Cambridge, Mass.) – A powerful collision of galaxy clusters has been captured with NASA’s Chandra X-ray Observatory and Hubble Space Telescope. Like its famous cousin, the so-called Bullet Cluster, this clash of clusters provides striking evidence for dark matter and insight into its properties.

Like the Bullet Cluster, this newly studied cluster, officially known as MACSJ0025.4-1222, shows a clear separation between dark and ordinary matter. This helps answer a crucial question about whether dark matter interacts with itself in ways other than via gravitational forces.

This finding is important because it independently verifies the results found for the Bullet Cluster in 2006. The new results show the Bullet Cluster is not an exception and that the earlier results were not the product of some unknown error.

Just like the original Bullet Cluster, MACSJ0025 formed after an incredibly energetic collision between two large clusters in almost the plane of the sky. In some ways, MACSJ0025 can be thought of as a prequel to the Bullet Cluster. At its much larger distance of 5.7 billion light years, astronomers are witnessing a collision that occurred long before the Bullet Cluster’s.

Using optical images from Hubble, the team was able to infer the distribution of the total mass – dark and ordinary matter – using a technique known as gravitational lensing (colored in blue). The Chandra data enabled the astronomers to accurately map the position of the ordinary matter, mostly in the form of hot gas, which glows brightly in X-rays (pink).

An important difference between the Bullet Cluster and the new system is that MACSJ0025 does not actually contain a “bullet.” This feature is a dense, X-ray bright core of gas that can be seen moving through the Bullet Cluster. Nonetheless, the amount of energy involved in this mammoth collision is nearly as extreme as that found in the Bullet Cluster.

As the two clusters that formed MACSJ0025 (each almost a whopping million billion times the mass of the Sun) merged at speeds of millions of miles per hour, the hot gas in each cluster collided and slowed down, but the dark matter did not. The separation between the material shown in pink and blue therefore provides direct evidence for dark matter and supports the view that dark matter particles interact with each other only very weakly or not at all, apart from the pull of gravity.

One of the great accomplishments of modern astronomy has been to establish a complete inventory of the matter and energy content of the Universe. The so-called dark matter makes up approximately 23 percent of this content, five times more than the ordinary matter that can be detected by telescopes. The latest results with MACSJ0025 once again confirm these findings.




The international team of astronomers in this study was led by Marusa Bradac of UCSB, and Steve Allen of the Kavli Institute for Particle Astrophysics and Cosmology at Stanford and Stanford Linear Accelerator Center (SLAC). Other collaborators included Tommaso Treu, UCSB; Harald Ebeling, University of Hawaii; Richard Massey, Royal Observatory Edinburgh; R. Glenn Morris, SLAC; and Anja von der Linden, and Douglas Applegate, both of Stanford. Their results will appear in an upcoming issue of The Astrophysical Journal.

Collision of clusters from the Hubble Telescope and Chandra Observatory.

Collision of clusters from the Hubble Telescope and Chandra Observatory.

August 6, 2008

Making headway toward quantum computing

From KurzweilAI.net:

Breakthrough In Quantum Mechanics: Superconducting Electronic Circuit Pumps Microwave Photons
ScienceDaily, Aug. 5, 2008

Researchers at UC Santa Barbara have used a superconducting electronic circuit known as a Josephson phase qubit to store up to six microwave photons in a superconducting microwave resonator.

The research could help in the quest to build a quantum computer.
Read Original Article>>