David Kirkpatrick

April 19, 2010

SETI to release radio data on search for extraterrestrial life

Hot from today’s inbox, news from SETI that tremendously expands the brainpower brought to bear on its massive collection of radio telescope data.

The release:

SETI Institute Announces Public Availability of Radio Telescope Signal Data in Latest Milestone for Director Dr. Jill Tarter’s 2009 TED Prize Wish to Enlist all Earthlings in Search for Extra-terrestrial Intelligence

MOUNTAIN VIEW, Calif., April 19 /PRNewswire/ — SETI Institute, an interdisciplinary scientific organization that explores the nature of life throughout the universe, announced that starting today it will make large quantities of astronomical radio telescope data accessible to astronomers and other scientists as part of an effort to build a global community of searchers for evidence of extra-terrestrial intelligence.

Today’s announcement represents the latest milestone in SETI Institute’s mission to facilitate mass collaboration in the search for civilizations beyond earth.  The radio telescope data will be released by setiQuest, a program formed in 2009 after SETI Institute Director Dr. Jill Tarter was awarded the 2009 TED Prize, whose benefits included $100,000 and the assistance of the global TED community to help realize her “One Wish to Change the World.”  Accepting the prize, Dr. Tarter asked the TED community to “empower Earthlings everywhere to become active participants in the ultimate search for cosmic company.”

After months in development, the setiQuest program has reached the point where it is able to invite the global scientific community to access radio signal data collected by SETI Institute’s Allen Telescope Array (ATA).  Commissioned in 2007, the Allen array is operated jointly by SETI Institute and the University of California at Berkeley. It is a “Large Number of Small Dishes” (LNSD) telescope array designed to conduct surveys for both conventional radio astronomy by the university, as well as for SETI Institute’s research.

SETI Institute analyzes the ATA radio data in real time with special software to detect technological signals from a distant extra-terrestrial civilization.  The process is analogous to listening to one hundred million radios, each tuned to a different channel and attached to an antenna that is highly sensitive to just one millionth of the sky, to find faint signals.

To date, SETI Institute’s methods have focused on the search for what are called narrowband signals. One of the benefits of opening the ATA data to the global scientific community is to invite development of techniques to analyze broadband signals.

The radio telescope data will be made available through setiQuest’s website, www.setiquest.org, in the form of files containing streams of data samples from specific targets in space. Data can be accessed by registered participants in the setiQuest program.  SETI Institute hopes that by making the ATA data widely available, scientists around the world will develop new and innovative ways to process the massive quantities of radio signals streaming from space every second.

SETI Institute search programs have processed data in real time and discarded it shortly after the observation. They are capturing these new data sets to invite the public to expand the search. Now, setiQuest will provide a day’s worth of ATA data each week, and will leave the data on its website for up to six months.

While astronomers and specialists with experience in digital signal processing (DSP) may by the likely initial population of scientists and technologists with an interest in setiQuest, the program welcomes scientists and technologists of all disciplines.  Those interested in learning how they can be part of the setiQuest project can find more information at www.setiQuest.org.

For more details of the progress of Dr. Tarter’s TED Prize wish, visit http://www.tedprize.org/jill-tarter/.

About SETI Institute

The mission of SETI Institute is to explore, understand and explain the origin, nature and prevalence of life in the universe. At SETI Institute biologists, physicists, chemists, astronomers, ecologists, planetary scientists, geologists, engineers, technologists, and educators join forces in the quest to find life elsewhere. This includes the search for potentially inhabited planets in our Solar System and beyond, laboratory and field investigations of the origins and early evolution of life, and studies of the potential of life to adapt to future challenges on Earth and in space. For more information about SETI, visit www.seti.org.  For information about setiQuest, visit www.setiquest.org.

Source: TED Conferences

February 12, 2010

Nanogenerators and electric clothes

(Number two of two posts on nanotechnology and electricity. Hit this link for part one)

The idea of smart clothes has been around for ages. Looks like this might just be a breakthrough to electric clothing becoming a reality.

That oughta bring a whole new meaning to “social networking.” Thank you, thank you, I’ll be here all weekend. Be sure and come back tomorrow for the complimentary Saturday buffet and half-price happy hour.

The release:

New fiber nanogenerators could lead to electric clothing

By Sarah Yang, Media Relations | 12 February 2010

BERKELEY — In research that gives literal meaning to the term “power suit,” University of California, Berkeley, engineers have created energy-scavenging nanofibers that could one day be woven into clothing and textiles.

These nano-sized generators have “piezoelectric” properties that allow them to convert into electricity the energy created through mechanical stress, stretches and twists.

“This technology could eventually lead to wearable ‘smart clothes’ that can power hand-held electronics through ordinary body movements,” said Liwei Lin, UC Berkeley professor of mechanical engineering and head of the international research team that developed the fiber nanogenerators.

Because the nanofibers are made from organic polyvinylidene fluoride, or PVDF, they are flexible and relatively easy and cheap to manufacture.

Although they are still working out the exact calculations, the researchers noted that more vigorous movements, such as the kind one would create while dancing the electric boogaloo, should theoretically generate more power. “And because the nanofibers are so small, we could weave them right into clothes with no perceptible change in comfort for the user,” said Lin, who is also co-director of the Berkeley Sensor and Actuator Center at UC Berkeley.

The fiber nanogenerators are described in this month’s issue of Nano Letters, a peer-reviewed journal published by the American Chemical Society.

The goal of harvesting energy from mechanical movements through wearable nanogenerators is not new. Other research teams have previously made nanogenerators out of inorganic semiconducting materials, such as zinc oxide or barium titanate. “Inorganic nanogenerators — in contrast to the organic nanogenerators we created — are more brittle and harder to grow in significant quantities,” Lin said.

The tiny nanogenerators have diameters as small as 500 nanometers, or about 100 times thinner than a human hair and one-tenth the width of common cloth fibers. The researchers repeatedly tugged and tweaked the nanofibers, generating electrical outputs ranging from 5 to 30 millivolts and 0.5 to 3 nanoamps.

Furthermore, the researchers report no noticeable degradation after stretching and releasing the nanofibers for 100 minutes at a frequency of 0.5 hertz (cycles per second).

Lin’s team at UC Berkeley pioneered the near-field electrospinning technique used to create and position the polymeric nanogenerators 50 micrometers apart in a grid pattern. The technology enables greater control of the placement of the nanofibers onto a surface, allowing researchers to properly align the fiber nanogenerators so that positive and negative poles are on opposite ends, similar to the poles on a battery.

Without this control, the researchers explained, the negative and positive poles might cancel each other out and reducing energy efficiency.

The researchers demonstrated energy conversion efficiencies as high as 21.8 percent, with an average of 12.5 percent.

“Surprisingly, the energy efficiency ratings of the nanofibers are much greater than the 0.5 to 4 percent achieved in typical power generators made from experimental piezoelectric PVDF thin films, and the 6.8 percent in nanogenerators made from zinc oxide fine wires,” said the study’s lead author, Chieh Chang, who conducted the experiments while he was a graduate student in mechanical engineering at UC Berkeley.

“We think the efficiency likely could be raised further,” Lin said. “For our preliminary results, we see a trend that the smaller the fiber we have, the better the energy efficiency. We don’t know what the limit is.”

Other co-authors of the study are Yiin-Kuen Fuh, a UC Berkeley graduate student in mechanical engineering; Van H. Tran, a graduate student at the Technische Universität München (Technical University of Munich) in Germany; and Junbo Wang, a researcher at the Institute of Electronics at the Chinese Academy of Sciences in Beijing, China.

The National Science Foundation and the Defense Advanced Research Projects Agency helped support this research.

fiber nanogenerator
Shown is a fiber nanogenerator on a plastic substrate created by UC Berkeley scientists. The nanofibers can convert energy from mechanical stresses and into electricity, and could one day be used to create clothing that can power small electronics. (Chieh Chang, UC Berkeley)

October 1, 2009

Introducing the (new) oldest pre-human

Over four million years old.

The release:

Ardi displaces Lucy as oldest hominid skeleton

Ethiopian desert yields fossils that paint new picture of human evolution

Nearly 17 years after plucking the fossilized tooth of a new human ancestor from a pebbly desert in Ethiopia, an international team of scientists today (Thursday, Oct. 1) announced their reconstruction of a partial skeleton of the hominid, Ardipithecus ramidus, which they say revolutionizes our understanding of the earliest phase of human evolution.

The female skeleton, nicknamed Ardi, is 4.4 million years old, 1.2 million years older than the skeleton of Lucy, or Australopithecus afarensis, the most famous and, until now, the earliest hominid skeleton ever found. Hominids are all fossil species closer to modern humans than to chimps and bonobos, which are our closest living relatives.

“This is the oldest hominid skeleton on Earth,” said Tim White, University of California, Berkeley, professor of integrative biology and one of the co-directors of the Middle Awash Project, a team of 70 scientists that reconstructed the skeleton and other fossils found with it. “This is the most detailed snapshot we have of one of the earliest hominids and of what Africa was like 4.4 million years ago.”

White and the team will publish the results of their analysis in 11 papers in the Oct. 2 issue of the journal Science, which has Ardi on the cover. They announced their findings at press conferences held simultaneously today in Washington, D.C., and Addis Ababa, Ethiopia.

The team’s reconstruction of the 4-foot-tall skeleton and of Ardi’s environment – a woodland replete with parrots, monkeys, bears, rhinos, elephants and antelope – alters the picture scientists have had of the first hominid to arise after the hominid line that would eventually lead to humans split about 6 million years ago from the line that led to living chimpanzees.

Based on a thorough analysis of the creature’s foot, leg and pelvis bones, for example, the scientists concluded that Ardi was bipedal – she walked on two legs – despite being flat-footed and likely unable to walk or run for long distances.

In part, this primitive ability to walk upright is because Ardi was still a tree-dweller, they said. She had an opposable big toe, like chimpanzees, but was probably not as agile in the trees as a chimp. Unlike chimps, however, she could have carried things while walking upright on the ground, and would have been able to manipulate objects better than a chimp. And, contrary to what many scientists have thought, Ardi did not walk on her knuckles, White said.

“Ardi was not a chimpanzee, but she wasn’t human,” stressed White, who directs UC Berkeley’s Human Evolution Research Center. “When climbing on all fours, she did not walk on her knuckles, like a chimp or gorilla, but on her palms. No ape today walks on its palms.”

Ardi’s successor, Lucy, was much better adapted for walking on the ground, suggesting that “hominids became fundamentally terrestrial only at the Australopithecus stage of evolution,” he said.

Based on Ardi’s small, blunt, upper canine teeth, the team also argues that the males of that species did not engage in the same fearsome, teeth-baring threat behavior common in chimpanzees, gorillas and orangutans. Instead, they must have had a more amicable relationship, the scientists said, implying that several pair-bonded couples lived together in social units. Males may even have helped in gathering food for sharing.

“The novel anatomy that we describe in these papers fundamentally alters our understanding of human origins and early evolution,” said anatomist and evolutionary biologist C. Owen Lovejoy of Kent State University, a scientist with the project. In a summary article in Science, Lovejoy wrote that these and other behaviors “would have substantially intensified male parental investment – a breakthrough adaptation with anatomical, behavioral, and physiological consequences for early hominids and for all of their descendants, including ourselves.”

Until now, the oldest fossil skeleton of a human ancestor was the 3.2-million-year-old partial skeleton of Lucy, discovered in the Afar depression of Ethiopia, near Hadar, in 1974 and named Au. afarensis.

In 1992, however, while surveying a site elsewhere in the Afar, near the village of Aramis, 140 miles northeast of Addis Ababa, Middle Awash Project scientist Gen Suwa discovered a tooth from a more primitive creature more than 1 million years older than Lucy. After more fossils of the creature were found in the area from some 17 individuals, Suwa, White and project co-leader Berhane Asfaw published the discovery in the journal Nature in 1994.

Although that first paper initially conservatively placed the chimp-like creature in the Australopithecus genus with Lucy, the team subsequently created a new genus – Ardipithecus – for the hominid because of the fossils’ significantly more primitive features.

After preparing their first report, the scientists continued to find more Ar. ramidus fossils in the Aramis area. A hand-bone discovered in 1994 by project scientist Yohannes Haile-Selassie, a paleontologist and curator at the Cleveland Museum of Natural History, eventually led the team to the partial skeleton now known as Ardi, which they excavated during three subsequent field seasons. The skeleton was disarticulated and scattered, and broken into smaller pieces: 125 fragments of skulls, teeth, arms, hands, the pelvis, legs and feet. In addition to this skeleton, the area yielded a total of 110 other catalogued specimens representing body parts of at least 36 other Ardipithecus individuals.

After the bones were excavated at the site, they were molded and painstakingly removed from their protective plaster jackets in the laboratory in Addis Ababa, where they were then photographed and reconstructed. Micro-CT scanners were used to study the inner and outer anatomy of the bones and teeth, and scanning electron microscopes were used to study the structure and surface details. The 5,000 micro-CT slices through the broken skull allowed the team to reconstruct it on a computer and then “print” it on a 3-D stereolithic printer at the University of Tokyo. A cast of Ardi’s skull, along with video and comparisons, can be seen now in the Human Evolution display on the second floor of UC Berkeley’s Valley Life Sciences Building.

In all, 47 scientists from 10 countries contributed to the 11 Science papers, providing detailed analyses of the feet, pelvis, teeth and general anatomy of Ar. ramidus and reconstructions of the geology and biology of the area where Ardi lived 4.4 million years ago. Two of the papers analyze more than 150,000 plant and animal fossils – including 6,000 individually catalogued vertebrate fossils – to reconstruct the large and small mammals and birds of the area. Among these are 20 species new to science, including shrews, bats, rodents, hares and carnivores.

“We had to do a lot of work to bring this world back to life, but by merging the skeletal information with the data on biology and geology, we end up with a very, very high-resolution snapshot of Ardi’s world,” White said. “It was a very cold case investigation.”

CTs of the tooth enamel, for example, revealed that Ardi was an omnivore, eating a diet different from that of living African apes, such as chimps, which eat primarily fruit, and gorillas, which eat primarily leaves, stems and bark. The team suggests that Ardipithecus spent a lot of time on the ground looking for nutritious plants, mushrooms, invertebrates and perhaps small vertebrates.

It wasn’t until 1 million years after Ardi that hominids like Lucy were able to range extensively into the savannas and develop the robust premolar and molar teeth with thick enamel needed to eat hard seeds and roots. One of these species then started scavenging and using stone tools to butcher larger mammals for meat, “paving the way to the evolution and geographic expansion of Homo, including later elaboration of technology and expansion of the brain,” White said.

White said Ardi, who probably weighed about 110 pounds, had a brain close to the size of today’s chimpanzees – one-fifth that of Homo sapiens – and a small face. Males and females were about the same size. The hominid’s lack of resemblance to either chimp or modern humans indicates that the last common ancestor of apes and humans looked like neither, he said, and that both lines have evolved significantly since they split 6 million years ago.

White admits that the relationship between Ar. ramidus and the Australopithecus fossils the team has found about 80 meters higher in the strata of the Ethiopian desert is tentative. Nevertheless, he said Ardi’s species could be the direct ancestor of Lucy’s species, which could be the direct ancestor of modern humans. Without additional fossil evidence, however, connecting the individual or species dots is hazardous, White said.

Ardipithecus ramidus is only known from this one productive site in Ethiopia,” White said. “We hope others will find more fossils, in particular fossils from the period of 3-5 million years ago, to test this hypothesis of descent.”

###

Among the many team members and co-authors who worked on the series of Science papers are geologist and Middle Awash team co-director Giday WoldeGabriel of Los Alamos National Laboratory (LANL); Leslea Hlusko, associate professor of integrative biology at UC Berkeley; and Paul Renne, director of the Berkeley Geochronology Center and an adjunct professor of earth and planetary science at UC Berkeley. Many of the 47 authors are UC Berkeley faculty, postdocs, students and alumni, reflecting the strength and tradition of human origins research at UC Berkeley for the last century.

The Middle Awash research effort is supported by the National Science Foundation and the Institute of Geophysics and Planetary Physics of the University of California at LANL.

Fossil Skeleton From Africa Predates Lucy

Tim White, 2008, from the October 2 issue of Science

November 13, 2008

Hubble directly sees extrasolar planet

Sorry about the release dump today, but I haven’t done one in a while and this just hit the inbox and was way, way too cool to pass up passing it along.

The release:

Hubble Directly Observes A Planet Orbiting Another Star

WASHINGTON, Nov. 13 /PRNewswire-USNewswire/ — NASA’s Hubble Space Telescope has taken the first visible-light snapshot of a planet circling another star.

(Logo: http://www.newscom.com/cgi-bin/prnh/20081007/38461LOGO)

Estimated to be no more than three times Jupiter’s mass, the planet, called Fomalhaut b, orbits the bright southern star Fomalhaut, located 25 light-years away in the constellation Piscis Australis, or the “Southern Fish.”

Fomalhaut has been a candidate for planet hunting ever since an excess of dust was discovered around the star in the early 1980s by NASA’s Infrared Astronomy Satellite, IRAS.

In 2004, the coronagraph in the High Resolution Camera on Hubble’s Advanced Camera for Surveys produced the first-ever resolved visible-light image of the region around Fomalhaut. It clearly showed a ring of protoplanetary debris approximately 21.5 billion miles across and having a sharp inner edge.

This large debris disk is similar to the Kuiper Belt, which encircles the solar system and contains a range of icy bodies from dust grains to objects the size of dwarf planets, such as Pluto.

Hubble astronomer Paul Kalas, of the University of California at Berkeley, and team members proposed in 2005 that the ring was being gravitationally modified by a planet lying between the star and the ring’s inner edge.

Circumstantial evidence came from Hubble’s confirmation that the ring is offset from the center of the star. The sharp inner edge of the ring is also consistent with the presence of a planet that gravitationally “shepherds” ring particles. Independent researchers have subsequently reached similar conclusions.

Now, Hubble has actually photographed a point source of light lying 1.8 billion miles inside the ring’s inner edge. The results are being reported in the November 14 issue of Science magazine.

“Our Hubble observations were incredibly demanding. Fomalhaut b is 1 billion times fainter than the star. We began this program in 2001, and our persistence finally paid off,” Kalas says.

“Fomalhaut is the gift that keeps on giving. Following the unexpected discovery of its dust ring, we have now found an exoplanet at a location suggested by analysis of the dust ring’s shape. The lesson for exoplanet hunters is ‘follow the dust,'” said team member Mark Clampin of NASA’s Goddard Space Flight Center in Greenbelt, Md.

Observations taken 21 months apart by Hubble’s Advanced Camera for Surveys’ coronagraph show that the object is moving along a path around the star, and is therefore gravitationally bound to it. The planet is 10.7 billion miles from the star, or about 10 times the distance of the planet Saturn from our sun.

The planet is brighter than expected for an object of three Jupiter masses. One possibility is that it has a Saturn-like ring of ice and dust reflecting starlight. The ring might eventually coalesce to form moons. The ring’s estimated size is comparable to the region around Jupiter and its four largest orbiting satellites.

Kalas and his team first used Hubble to photograph Fomalhaut in 2004, and made the unexpected discovery of its debris disk, which scatters Fomalhaut’s starlight. At the time they noted a few bright sources in the image as planet candidates. A follow-up image in 2006 showed that one of the objects is moving through space with Fomalhaut but changed position relative to the ring since the 2004 exposure. The amount of displacement between the two exposures corresponds to an 872-year-long orbit as calculated from Kepler’s laws of planetary motion.

Future observations will attempt to see the planet in infrared light and will look for evidence of water vapor clouds in the atmosphere. This would yield clues to the evolution of a comparatively newborn 100-million-year-old planet. Astrometric measurements of the planet’s orbit will provide enough precision to yield an accurate mass.

NASA’s James Webb Space Telescope, scheduled to launch in 2013 will be able to make coronagraphic observations of Fomalhaut in the near- and mid-infrared. Webb will be able to hunt for other planets in the system and probe the region interior to the dust ring for structures such as an inner asteroid belt. For more information about the Hubble Space Telescope, visit:

http://www.nasa.gov/hubble

Photo:  http://www.newscom.com/cgi-bin/prnh/20081007/38461LOGO
AP Archive:  http://photoarchive.ap.org/
PRN Photo Desk photodesk@prnewswire.com
Source: NASA
   

Web Site:  http://www.nasa.gov/

September 9, 2008

Infovell mines the deep Web

This may turn out to be a very important tool specifically for research, but really even for basic web searching for detailed information.

From the link:

According to a study by the University of California at Berkeley, traditional search engines such as Google and Yahoo index only about 0.2% of the Internet. The remaining 99.8%, known as the “deep Web,” is a vast body of public and subscription-based information that traditional search engines can’t access.

To dig into this “invisible” information, scientists have developed a new search engine called Infovell geared at helping researchers find often obscure data in the deep Web. As scientists working on the Human Genome Project, Infovell´s founders designed the new searching technology based on methods in genomics research. Instead of using keywords, Infovell accepts much longer search terms, and in any language.

 

And:

Infovell is being demonstrated at DEMOfall08, a conference for emerging technologies taking place in San Diego on September 7-9. Users can sign up for a 30-day risk-free trial at Infovell´s Web site, and Infovell is initially available on a subscription basis. Later this year, Infovell will release a free beta version on a limited basis without some of the advanced features in the premium version.

August 13, 2008

All-nanowire loaded chip

Just after blogging on UC Berkeley’s recent research gift from Applied Materials, this story appears in the inbox. The university has created the first integrated circuit using nanowires as both sensors and electronic components.

This technology has a lot of possibities, even beyond silicon chips.

From the second link:

Nanowires make good sensors because their small dimensions enhance their sensitivity. Nanowire-based light sensors, for example, can detect just a few photons. But to be useful in practical devices, the sensors have to be integrated with electronics that can amplify and process such small signals. This has been a problem, because the materials used for sensing and electronics cannot easily be assembled on the same surface. What’s more, a reliable way of aligning the tiny nanowires that could be practical on a large scale has been hard to come by.

A printing method developed by the Berkeley group could solve both problems. First, the researchers deposit a polymer on a silicon substrate and use lithography to etch out patterns where the optical sensing nanowires should be. They then print a single layer of cadmium selenide nanowires over the pattern; removing the polymer leaves only the nanowires in the desired location for the circuit. They repeat the process with the second type of nanowires, which have germanium cores and silicon shells and form the basis of the transistors. Finally, they deposit electrodes to complete the circuits.

University of California, Berkeley, researchers were able to create an orderly circuit array from two types of tiny nanowires, which can function as optical sensors and transistors. Each of the circuits on the 13-by-20 array serves as a single pixel in an all-nanowire image sensor.

Squared away: University of California, Berkeley, researchers were able to create an orderly circuit array from two types of tiny nanowires, which can function as optical sensors and transistors. Each of the circuits on the 13-by-20 array serves as a single pixel in an all-nanowire image sensor.

Applied Materials makes over $5M gift to UC Berkeley

The University of California at Berkeley is doing some interesting work in nanotechnology (such as this “cloak of invisibility”) Applied Materials, the Santa Clara-based nanotech company is making that progress easier to achieve to the tune of more than $5 million.

Here’s a press release outlining the gift:

Applied Materials Advances Semiconductor Research at UC Berkeley With Significant Equipment Donation

SANTA CLARA, Calif.–(BUSINESS WIRE)–Applied Materials (Nasdaq:AMAT) is advancing semiconductor research with an equipment and service donation to the University of California, Berkeleys Nanofabrication Laboratory in the Center for Information Technology Research in the Interest of Society (CITRIS). CITRIS is a center of excellence for graduate students, faculty and industrial researchers to create nanotechnology solutions for many of the worlds most pressing social, environmental and health care issues.

In order to accelerate breakthrough technologies, we believe it is important for students to work on advanced equipment and gain hands-on experience working on semiconductor devices,said Om Nalamasu, Deputy CTO and Vice President of Advanced Technologies at Applied Materials. We are pleased to be part of CITRIS and look forward to working together with students and faculty, and to a stronger affiliation with the University.

Applied Materials gift consists of processing equipment and a service contract valued in excess of $5 million. The systems complement Applied Materials equipment that was donated to the university in 2002.

These advanced systems will be used by our engineering students to accelerate groundbreaking research in semiconductor and related nanofabrication technology that may fuel an array of new discoveries,said Shankar Sastry, Dean of the College of Engineering. We thank Applied Materials for its continued support as these tools will be valuable to the Universitys programs.

CITRIS will foster work on novel semiconductor devices and their integration with nanowires/nanotubes, microelectomechanical systems (MEMS), optoelectronics, and bioelectronics. The systems donated by Applied will be used to deposit two of the most critical thin films that are part of next-generation integrated circuits: epitaxy and gate dielectrics.

In addition, as a result of Applied Materialsinvestment and continued support, UC Berkeley will dedicate a collaborative laboratory within CITRIS, known as a Collaboratory,to Applied Materials and it will be devoted to energy research. The Collaboratory is a key feature of CITRIS, providing faculty, students and industrial researchers with spaces for project-driven collaboration. The capability of The Collaboratory combines well with Applied Materials solar strategy to bring significant change to the industry by developing new technologies that enable lower cost-per-watt solutions for solar cell manufacturing with the goal of making solar power a significant alternative source of global energy.

Applied Materials Inc. (Nasdaq:AMAT) is the global leader in Nanomanufacturing Technologysolutions with a broad portfolio of innovative equipment, service and software products for the fabrication of semiconductor chips, flat panel displays, solar photovoltaic cells, flexible electronics and energy efficient glass. At Applied Materials, we apply nanomanufacturing technology to improve the way people live.

August 11, 2008

Cloaking device becoming feasible?

From KurzweilAI.net — I’ve blogged on 3D cloaking devices before, very likely the previous KurzweilAI.net linked blog post from mid-May is an earlier report of this project. Both stories originate from UC Berkeley.

At any rate, here’s 3D cloaking part two:

Practical Cloaking Devices On The Horizon?
PhysOrg.com, Aug. 10, 2008University of California, Berkeley scientists have created a multilayered, “fishnet” metamaterial that unambiguously exhibits negative refractive index, allowing for invisibility in three dimensions for the first time, Nature magazine plans to report this week.

 
Read Original Article>>

 

Update — Here’s another take on this story, once again from PhysOrg. This time with pictures!

From the link:

Two breakthroughs in the development of metamaterials – composite materials with extraordinary capabilities to bend electromagnetic waves – are reported separately this week in the Aug. 13 advanced online issue of Nature, and in the Aug. 15 issue of Science.

Applications for a metamaterial entail altering how light normally behaves. In the case of invisibility cloaks or shields, the material would need to curve light waves completely around the object like a river flowing around a rock. For optical microscopes to discern individual, living viruses or DNA molecules, the resolution of the microscope must be smaller than the wavelength of light.

The common thread in such metamaterials is negative refraction. In contrast, all materials found in nature have a positive refractive index, a measure of how much electromagnetic waves are bent when moving from one medium to another.

In a classic illustration of how refraction works, the submerged part of a pole inserted into water will appear as if it is bent up towards the water’s surface. If water exhibited negative refraction, the submerged portion of the pole would instead appear to jut out from the water’s surface. Or, to give another example, a fish swimming underwater would instead appear to be moving in the air above the water’s surface

And here’s the image:

On the left is a schematic of the first 3-D "fishnet" metamaterial that can achieve a negative index of refraction at optical frequencies. On the right is a scanning electron microscope image of the fabricated structure, developed by UC Berkeley researchers. The alternating layers form small circuits that can bend light backwards. Image by Jason Valentine, UC Berkeley
On the left is a schematic of the first 3-D “fishnet” metamaterial that can achieve a negative index of refraction at optical frequencies. On the right is a scanning electron microscope image of the fabricated structure, developed by UC Berkeley researchers. The alternating layers form small circuits that can bend light backwards. Image by Jason Valentine, UC Berkeley

July 29, 2008

Nanowire lawns sense images

Filed under: Science, Technology — Tags: , , , — David Kirkpatrick @ 1:00 pm

From KurzweilAI.net — another nanotech breakthrough from researchers at the University of California at Berkeley.

Nanowire lawns make for sheets of image sensors
New Scientist news service, July 28, 2008

University of California, Berkeley researchers are growing a mixed “lawn” of two kinds of nanowires to make a new kind of cheap, high-quality image sensor array that could be made in meter-scale sheets.

The arrays are reliable, flexible and easy to scale up. They could be grown to form rolls of tape several meters in diameter with all the needed components to do active sensing, translate the data, and transmit it wirelessly.

 
Read Original Article>>

Nanoscale sensor weighs single atom of gold

This is pretty amazing. Researchers with Berkeley Lab and the University of California at Berkeley have created a “scale” that can weigh a single atom of gold.

From the link (it’s an article/press release mix):

There’s a new “gold standard” in the sensitivity of weighing scales. Using the same technology with which they created the world’s first fully functional nanotube radio, researchers with Berkeley Lab and the University of California (UC) at Berkeley have fashioned a nanoelectromechanical system (NEMS) that can function as a scale sensitive enough to measure the mass of a single atom of gold.

Alex Zettl, a physicist who holds joint appointments with Berkeley Lab’s Materials Sciences Division (MSD) and UC Berkeley’s Physics Department, where he is the director of the Center of Integrated Nanomechanical Systems, led this research. Working with him were members of his research group, Kenneth Jensen and Kwanpyo Kim.

“For the past 15 years or so, the holy grail of NEMS has been to push them to a small enough size with high enough sensitivity so that they might resolve the mass of a single molecule or even single atom,” Zettl said. “This has been a challenge even at cryogenic temperatures where reduced thermal noise improves the sensitivity. We have achieved sub-single-atom resolution at room temperature!”

The new NEMS mass sensor consists of a single carbon nanotube that is double-walled to provide uniform electrical properties and increased rigidity. One tip of the carbon nanotube is free and the other tip is anchored to an electrode in close proximity to a counter-electrode. A DC voltage source, such as from a battery or a solar cell array, is connected to the electrodes. Applying a DC bias creates a negative electrical charge on the free tip of the nanotube.  An additional radio frequency wave “tickles” the nanotube, causing it to vibrate at a characteristic “flexural” resonance frequency.

May 14, 2008

More science fiction turning into science fact

From KurzweilAI.net, taking steps toward an invisibility cloak

New material may be step towards 3D invisibility cloak
New Scientist, May 13, 2008

A researcher at the University of California at Berkeley claims to have made a 3D metamaterial with a negative refractive index, the first 3D material of this kind.

Physicists have in recent years made it possible to bend, or refract, light in the opposite direction to any natural materials. These metamaterials make it possible to create invisibility cloaks that hide an object by steering light around it. The materials and “invisibility cloaks” built so far have all been flat, working only in two dimensions.

The negative refraction index will have to be confirmed by measuring the speed of light in the material.

See Also Physicists draw up plans for real ‘cloaking device’

 
Read Original Article>>

May 1, 2008

Cheaper solar, “erasable” printer paper and medical imaging simplification

Nice group from KurzweilAI.net today. News that solar is coming down in price, “erasable” printer paper, and a simplification for sending medical imaging data.

A Price Drop for Solar Panels
Technology Review, May 1, 2008

A shortage of the silicon used in solar panels is almost over, industry analysts predict. This could lead to a sharp drop in prices over the next couple of years, making solar electricity comparable to power from the grid.

Added silicon production capacity is now starting to begin operations. While only 15,000 tons of silicon were available for use in solar cells in 2005, by 2010, this number could grow to 123,000 tons. And that will allow existing and planned production of solar panels to ramp up, increasing supply and reducing prices.

Prices for solar panels could drop by as much as 50 percent from 2006 to 2010. In areas that get a lot of sun, that will translate to solar electricity costs of about 10 cents per kilowatt hour, matching the average price of electricity in the United States.

 
Read Original Article>>

 

Xerox touts erasable paper, smart documents
Computerworld, April 29, 2008

Xerox has developed paper that can be reused after printed text automatically deletes itself from the paper’s surface within 24 hours.

A single piece of paper can be reused up to 100 times for black and white printing. The paper contains specially coded molecules that create a print after being exposed to ultraviolet light emitted from a thin bar in a printer. The molecule readjusts itself within 24 hours to its original form to delete the print, or heat can readjust the molecule instantly.

Xerox scientists also demonstrated technologies to make documents more intelligent by providing a deeper meaning to text and images. This is done by cross-referencing similar data and images mined off the Internet and incorporating other sources like e-mail messages and corporate networks.

 
Read Original Article>>

 

Cellphones used for medical imaging?
ZDNET, April 30, 2008

University of California at Berkeley researchers have developed a technique for transmitting medical images via cellphones.

The cell phone, hooked up to the data acquisition device(breast tomoography sensor, xray or MRI machine, etc.), would transmit the raw data to a central server, where the information would be used to create an image. The server would then relay a highly compressed image back to the cell phone, where the doctor could view it on the cell phone screen.

The system makes medical imaging much cheaper and more accessible to the poor because the apparatus at the patient site is greatly simplified, and there is no need for personnel highly trained in imaging processing.

Video

 
Read Original Article>>