David Kirkpatrick

September 9, 2010

The public is a bit wary of synthetic biology

I’m a boundary-pusher in scientific research — I love nanotechnology, stem cell research, genetic research, robotics applications, and of course, I love the promise of synthetic biology. This poll finds only one-third of of surveyed adults want to see the field banned until it’s better understood, but a majority do want to see more government oversight.

The release:

The Public Looks At Synthetic Biology — Cautiously

WASHINGTON, DC: Synthetic biology—defined as the design and construction of new biological parts, devices, and systems or re-design of existing natural biological systems for useful purposes—holds enormous potential to improve everything from energy production to medicine, with the global market projected to reach $4.5 billion by 2015. But what does the public know about this emerging field, and what are their hopes and concerns? A new poll of 1,000 U.S. adults conducted by Hart Research Associates and the Synthetic Biology Project at the Woodrow Wilson Center finds that two-thirds of Americans think that synthetic biology should move forward, but with more research to study its possible effects on humans and the environment, while one-third support a ban until we better understand its implications and risks. More than half of Americans believe the federal government should be involved in regulating synthetic biology.

“The survey clearly shows that much more attention needs to be paid to addressing biosafety and biosecurity risks,” said David Rejeski, Director of the Synthetic Biology Project. “In addition, government and industry need to engage the public about the science and its applications, benefits, and risks.”

The poll findings reveal that the proportion of adults who say they have heard a lot or some about synthetic biology has almost tripled in three years, (from 9 percent to 26 percent). By comparison, self-reported awareness of nanotechnology increased from 24 percent to 34 percent during the same three-year period.

Although the public supports continued research in the area of synthetic biology, it also harbors concerns, including 27 percent who have security concerns (concerns that the science will be used to make harmful things), 25 percent who have moral concerns, and a similar proportion who worry about negative health consequences for humans. A smaller portion, 13 percent, worries about possible damage to the environment.

“The survey shows that attitudes about synthetic biology are not clear-cut and that its application is an important factor in shaping public attitudes towards it,” said Geoff Garin, President of Hart Research. Six in 10 respondents support the use of synthetic biology to produce a flu vaccine. In contrast, three-fourths of those surveyed have concerns about its use to accelerate the growth of livestock to increase food production. Among those for whom moral issues are the top concern, the majority views both applications in a negative light.

The findings come from a nationwide telephone survey of 1,000 adults and has a margin of error of ± 3.1 percentage points. This is the fifth year that Hart Research Associates has conducted a survey to gauge public opinion about nanotechnology and/or synthetic biology for the Woodrow Wilson International Center for Scholars.

###

The report can be found at: www.synbioproject.org

The Woodrow Wilson International Center for Scholars of the Smithsonian Institution was established by Congress in 1968 and is headquartered in Washington, D.C. It is a nonpartisan institution, supported by public and private funds and engaged in the study of national and world affairs.

September 7, 2010

Low cost desalination for potable water

Via KurzweilAI.net — A theoretical device from the recently concluded Singularity University. This sounds like a fresh water solution with real promise.

From the first link:

Our approach leverages advances in 3 exponentially growing fields: synthetic biology, nanotechnology, and solar energy.  Synthetic biology is a factor because synthetic molecules are currently being developed that can create ionic bonds with sodium and chloride molecules, enabling fresh water to pass through a nanofilter using only the pressure of the water above the pipe.

Nanotechnology is relevant for reverse osmosis, because using thinner filter further reduces the amount of pressure required to separate fresh water from salt water. A filtration cube measuring 165mm (6.5 inches) per side could produce 100,000 gallons of purified water per day at 1 psi. Finally, as advances in solar energy improve the efficiency of  photovoltaics, the throughput of solar pumps will increase significantly, enabling more efficient movement and storage of fresh water.

Although the individual components described above have not advanced to a point where the solution is possible at present, we were able to speak with leading experts in each of these areas as to the timeline for these capabilities to be realized.

Synthetic molecules capable of bonding with sodium and chloride molecules have already been created, but have not yet been converted to an appropriate form for storage, such as a cartridge. This is expected to occur in the next 2-3 years. Filters are currently in the 10-15nm range, and are expected to reach 1nm over the next 3-5 years. As with the synthetic molecules, 1nm tubes have been built; just not assembled into a filter at this point. Photovoltaics are currently approximately 12% efficient, but it is anticipated that 20% efficiency is achievable in the next 5 years.

A possible implementation of our Naishio solution. The pressure from the water volume is sufficient to propel fresh water across the membrane (A), and photovoltaics (D) generate all the energy needed to pump water from the repository (C) to the water tank and circulator (E). Sensors (B) communicate between the solar pump and membrane to regulate the water level and ensure it doesn’t become contaminated. (Image: Sarah Jane Pell).

May 21, 2010

Synthetic biology and ethics

Any regular readers of this blog know where I stand on this issue. (Hint: I’m a pretty big fan of synthetic biology.)

From the first link, the release:

Press Release: Moral Issues Raised by Synthetic Biology Subject of Hastings Center Project

Project completes third workshop as news of first synthetic bacterial genome announced

(Garrison NY) A Hastings Center workshop examining moral issues in synthetic biology completed its third meeting as the J. Craig Venter Group announced that it had created the first viable cell with a synthetic genome. “Synthetic biology certainly raises deep philosophical and moral questions about the human relationship to nature,” according to Gregory Kaebnick, a Hastings Center scholar who is managing the project. “It’s not clear what the answers to those questions are.  If  by ‘nature’ we mean the world around us, more or less as we found it, we may well decide that synthetic biology does not really change the human relationship to nature—and may even help us preserve what is left of it.”

Nor is it clear that the questions raised by synthetic biology are new ones. According to Thomas H. Murray, president of The Hastings Center and the project’s principal investigator, “We have come up against similar problems in other domains—most notably, in work on nanotechnology and gene transfer technology—but synthetic biology poses them especially sharply and pressingly.”

The Hastings Center has been at the forefront of interdisciplinary research into ethical issues in emerging technology. The synthetic biology project is funded by a grant from the Alfred P. Sloan Foundation . Project participants include synthetic biologists, bioethicists, philosophers, and public policy experts. The Center’s work is part of a comprehensive look at synthetic biology by the Alfred P. Sloan Foundation. Other participants in the initiative are the J. Craig Venter Institute and the Woodrow Wilson International Center for Scholars.

Here’s the release on the Venter Institute’s bacterial cell controlled by a synthetic genome. Head below the fold for the full text. (more…)

February 21, 2010

Feeding the world through biotech, synthetic biology and nanotech

Another release from the AAAS 2010 annual meeting — this covers how cutting edge biology and nanotechnology can help meet the growing demand for food across the globe.

The release:

Biotech, nanotech and synthetic biology roles in future food supply explored

AAAS panel mulls science and public acceptance

SAN DIEGO – Some say the world’s population will swell to 9 billion people by 2030 and that will present significant challenges for agriculture to provide enough food to meet demand, says University of Idaho animal scientist Rod Hill.

Hill and Larry Branen, a University of Idaho food scientist, organized a symposium during the American Association for the Advancement of Science annual meeting Sunday to explore ways biotechnology could provide healthy and plentiful animal-based foods to meet future demands.

Synthetic biology, nanotechnology, genetic engineering and other applications of biotechnology – and the public’s role in determining their acceptable uses — were all addressed by panelists during the session.

The goal for the session, which was part of the nation’s largest and most prestigious general science meeting held annually, was to encourage a dialogue among scientists and the public, said Hill, a Moscow-based molecular physiologist who studies muscle growth in cattle.

“There will be a significant challenge for agriculture and the science that will be required to provide a healthy, nutritious and adequate food supply in coming decades for a rapidly growing population,” Hill said.

A key question, he said, is whether the Earth can continue to provide enough food without technological support. The history of civilization and agriculture during the last 10,000 years suggests otherwise.

“Unaided food production is an unattainable ideal – current society is irrevocably grounded in the technological interventions underpinning the agricultural revolution that now strives to feed the world,” Hill said.

Branen serves as the university’s Coeur d’Alene-based associate vice president for northern Idaho. He also remains active as a researcher working with nanotechnology in a variety of ways, including uses as biological sensors to detect disease or spoilage.

Nanoparticles may be used to target certain genes and thus play a role in genetic engineering of food animals. Branen said, “There’s also no question that nanomaterials may help increase the shelf stability of food products and assure their safety.”

Other panelists include University of Missouri Prof. Kevin Wells who believes genetically modified animals will have a future place on humanity’s tables, just as genetically modified plants do now.

Panelist Hongda Chen serves as the U.S. Department of Agriculture’s national program leader for bioprocessing engineering and nanotechnology. He will explore how scientific methods like nanotechnology may be applied to help meet the world’s growing demand for safe and healthy food.

Synthetic biology, the use of novel methods to create genes or chromosomes, will be explored by panelist Michele Garfinkel, a policy analyst for the J. Craig Venter Institute, which pioneered the sequencing of the human genome.

The public’s acceptance or rejection of new technologies that could determine future food supplies will be the domain of Susanna Priest, a professor at the University of Nevada Las Vegas. A communications researcher, she has argued that public debate is essential to public attitudes toward such technologies.

For Idaho’s Branen, the panel provides an opportunity to advance that public discussion.

“I think that’s essential,” he said. “We’ve seen lots of technologies where we didn’t get adoption because we didn’t get consumer acceptance and understanding. Irradiation of food has been possible for over 50 years but we still haven’t gotten to general use because there is still a fear and lack of understanding of it.” Branen added, “To me everything we’re doing today requires an extensive discussion and an interdisciplinary approach. We can’t just focus on the technology but must look at the social and political aspects of the technology as well.”

###

About the University of Idaho

Founded in 1889, the University of Idaho is the state’s flagship higher-education institution and its principal graduate education and research university, bringing insight and innovation to the state, the nation and the world. University researchers attract nearly $100 million in research grants and contracts each year; the University of Idaho is the only institution in the state to earn the prestigious Carnegie Foundation ranking for high research activity. The university’s student population includes first-generation college students and ethnically diverse scholars. Offering more than 130 degree options in 10 colleges, the university combines the strengths of a large university with the intimacy of small learning communities. The university is home to the Vandals, the 2009 Roady’s Humanitarian Bowl champions. For information, visit http://www.uidaho.edu

February 15, 2010

Synthetic biology marches on

Filed under: Science, Technology — Tags: , , , , , — David Kirkpatrick @ 3:36 pm

Via KurzweilAI.netSynthetic biology is here to stay and is branching out.

DNA 2.0: A new operating system for life is created
New Scientist Life, Feb. 14, 2010

University of Cambridge scientists have created a new way of using the genetic code, allowing proteins to be made with properties that have never been seen in the natural world.

The breakthrough could eventually lead to the creation of new or “improved” life forms incorporating these new materials into their tissue. For example, they could help make drugs that can be taken orally without being destroyed by the acids in the digestive tract, or produce entirely new polymers, such as plastic-like materials; organisms made of these cells could incorporate the stronger polymers and become stronger or more adaptable as a result.

In the genetic code that life has used up to now, there are 64 possible triplet combinations of the four nucleotide letters; these genetic “words” are called codons. Each codon either codes for an amino acid or tells the cell to stop making a protein chain. The researchers have created 256 blank four-letter codons that can be assigned to amino acids that don’t even exist yet.
Read Original Article>>

October 2, 2009

Synthetic biology in the marketplace

Synthetic biology is one of those technologies you’re going to be hearing more and more of in the near future. That is if you haven’t already run across the field after this article was published in the September 28, 2009, issue of the New Yorker. Here’s some news about Ginkgo BioWorks, a company in the marketplace right now creating well, synthetic biological material.

From the final link:

In a warehouse building in Boston, wedged between a cruise-ship drydock and Au Bon Pain’s corporate headquarters, sits Ginkgo BioWorks, a new synthetic-biology startup that aims to make biological engineering easier than baking bread. Founded by five MIT scientists, the company offers to assemble biological parts–such as strings of specific genes–for industry and academic scientists.

“Think of it as rapid prototyping in biology–we make the part, test it, and then expand on it,” says Reshma Shetty, one of the company’s cofounders. “You can spend more time thinking about the design, rather than doing the grunt work of making DNA.” A very simple project, such as assembling two pieces of DNA, might cost $100, with prices increasing from there.

Synthetic biology is the quest to systematically design and build novel organisms that perform useful functions, such as producing chemicals, using genetic-engineering tools. The field is often considered the next step beyond metabolic engineering because it aims to completely overhaul existing systems to create new functionality rather than improve an existing process with a number of genetic tweaks.

September 29, 2008

Nanotech coming at ya from left field

I’m guessing my readers don’t fall into this information category.

The release:

Nanotech and Synbio: Americans Don’t Know What’s Coming

Landmark poll shows little knowledge of emerging technologies

WASHINGTON, Sept. 30 /PRNewswire-USNewswire/ — A groundbreaking poll finds that almost half of U.S. adults have heard nothing about nanotechnology, and nearly nine in 10 Americans say they have heard just a little or nothing at all about the emerging field of synthetic biology, according to a new report released by the Project on Emerging Nanotechnologies (PEN) and Peter D. Hart Research.  Both technologies involve manipulating matter at an incredibly small scale to achieve something new.

This new insight into limited public awareness of emerging technologies comes as a major leadership change is about to take hold in the nation’s capital.  Public policy experts are concerned, regardless of party, that the federal government is behind the curve in engaging citizens on the potential benefits and risks posed by technologies that could have a significant impact on society.

“Early in the administration of the next president, scientists are expected to take the next major step toward the creation of synthetic forms of life. Yet the results from the first U.S. telephone poll about synthetic biology show that most adults have heard just a little or nothing at all about it,” says PEN Director David Rejeski. The poll findings are contained a report published today, The American Public’s Awareness Of And Perceptions About Potential Risks and Benefits of Nanotechnology & Synthetic Biology, and available at:  http://www.nanotechproject.org/n/synbio_poll.

Synthetic biology is the use of advanced science and engineering to construct or re-design living organisms – like bacteria – so that they can carry out specific functions. This emerging technology is likely to develop rapidly in the coming years, much as nanotechnology did in the last decade. In the near future the first synthetic biology “blockbuster” drug is anticipated to hit the market – an affordable treatment for the 500 million people in the world suffering from malaria.

The poll, which was conducted by the same firm that produces the well-known NBC News/Wall Street Journal polls, found that about two-thirds of adults say they have heard nothing at all about synthetic biology, and only 2 percent say they have heard “a lot” about the new technology. Even with this very low level of awareness, a solid two-thirds of adults are willing to express an initial opinion on the potential benefits versus risks tradeoff of synthetic biology.

This survey was informed by two focus groups conducted in August in suburban Baltimore. This is the first time – to the pollsters’ knowledge – that synthetic biology has been the subject of a representative national telephone survey.

At the same time, the poll found that about half of adults say they have heard nothing at all about nanotechnology. About 50 percent of adults are too unsure about nanotechnology to make an initial judgment on the possible tradeoffs between benefits and risks. Of those people who are willing to make an initial judgment, they think benefits will outweigh risks by a three to one margin when compared to those who believe risks will outweigh benefits. The plurality of respondents, however, believes that risks and benefits will be about equal. A major industry forecasting firm determined that last year nanotech goods in the global marketplace totaled $147 billion.

According to the poll, the level of U.S. public awareness about nanotechnology has not changed measurably since 2004 when Hart Research conducted the first poll on the topic on behalf of the PEN.

About Nanotechnology

Nanotechnology is the ability to measure, see, manipulate and manufacture things usually between 1 and 100 nanometers. A nanometer is one billionth of a meter; a human hair is roughly 100,000 nanometers wide. In 2007, the global market for goods incorporating nanotechnology totaled $147 billion. Lux Research projects that figure will grow to $3.1 trillion by 2015.

About Synthetic Biology

Synthetic biology is the use of advanced science and engineering to make or re-design living organisms, such as bacteria, so that they can carry out specific functions. Synthetic biology involves making new genetic code, also known as DNA, that does not already exist in nature.

The Project on Emerging Nanotechnologies is an initiative launched by the Woodrow Wilson International Center for Scholars and The Pew Charitable Trusts in 2005. It is dedicated to helping business, government and the public anticipate and manage possible health and environmental implications of nanotechnology. For more information about the project, log on to http://www.nanotechproject.org/.

For information about the Center, visit www.wilsoncenter.org.
Source: The Project on Emerging Nanotechnologies
   

Web Site:  http://www.nanotechproject.org/