David Kirkpatrick

July 22, 2010

Improving the application of nanocoatings

Nanocoatings do a lot of good, particularly with making solar cells more efficient. The trick is they haven’t been too easy to apply to big areas. Researchers at Stanford have helped change that issue.

From the link:

Nanoscale wires, pores, bumps, and other textures can dramatically improve the performance of solar cells, displays, and even self-cleaning coatings. Now researchers at Stanford University have developed a simpler, cheaper way to add these features to large surfaces.

Nanoscale structures offer particular advantages in devices that interact with light. For example, a thin-film solar cell carpeted with nano pillars is more efficient because the pillars absorb more light and convert more of it into electricity. Other nanoscale textures offer similar advantages in optical devices like display backlights.

The problem is scaling up to large areas, says Yi Cui, a Stanford professor of materials science and engineering who led the new work. “Many methods are really complex and don’t solve the problem,” says Cui. Lithography can be used to carve out nanoscale features with precise dimensions, but it’s expensive and difficult. Simpler techniques, such as spin-coating a surface with nanoparticles or using acids to etch it with tiny holes, don’t allow for much precision.

Nanosphere smear: Using a spinning rod to deposit an ink suspension of silica nanospheres is a simple way to create bumpy, nanotextured coatings like these three.

Credit: ACS/Nano Letters