David Kirkpatrick

September 8, 2010

Graphene research may lead to electronics improvement

A fairly radical improvement. Try highly efficient, very-low-heat producing and smaller electronics devices. I enjoy blogging about nanotech research with real promise for market applications.

From the link:

NIST recently constructed the world’s most powerful and stable scanning-probe microscope, with an unprecedented combination of low temperature (as low as 10 millikelvin, or 10 thousandths of a degree above absolute zero), ultra-high vacuum and high . In the first measurements made with this instrument, the team has used its power to resolve the finest differences in the electron energies in graphene, atom-by-atom.

“Going to this resolution allows you to see new physics,” said Young Jae Song, a postdoctoral researcher who helped develop the instrument at NIST and make these first measurements.

And the new physics the team saw raises a few more questions about how the electrons behave in graphene than it answers.

Because of the geometry and electromagnetic properties of graphene’s structure, an electron in any given energy level populates four possible sublevels, called a “quartet.” Theorists have predicted that this quartet of levels would split into different energies when immersed in a magnetic field, but until recently there had not been an instrument sensitive enough to resolve these differences.

“When we increased the magnetic field at extreme low temperatures, we observed unexpectedly complex quantum behavior of the electrons,” said NIST Fellow Joseph Stroscio.

What is happening, according to Stroscio, appears to be a “many-body effect” in which electrons interact strongly with one another in ways that affect their energy levels.