David Kirkpatrick

September 25, 2008

Quantum computing and more

We’re getting closer to harnessing quantum mechanics to create supercomputers and other devices.

From the link:

The brave new world of quantum technology may be a big step closer to reality thanks to a team of University of Calgary researchers that has come up with a unique new way of testing quantum devices to determine their function and accuracy. Their breakthrough is reported in today’s edition of Science Express, the advanced online publication of the prestigious journal Science.

“Building quantum machines is difficult because they are very complex, therefore the testing you need to do is also very complex,” said Barry Sanders, director of the U of C’s Institute for Quantum Information Science and a co-author of the paper. “We broke a bunch of taboos with this work because we have come up with an entirely new way of testing that is relatively simple and doesn’t require a lot of large and expensive diagnostic equipment.”

Similar to any electronic or mechanical device, building a quantum machine requires a thorough understanding of how each part operates and interacts with other parts if the finished product is going to work properly. In the quantum realm, scientists have been struggling to find ways to accurately determine the properties of individual components as they work towards creating useful quantum systems. The U of C team has come up with a highly-accurate method for analyzing quantum optical processes using standard optical techniques involving lasers and lenses.

April 16, 2008

World’s first thermal nanomotor

Filed under: Science, Technology — Tags: , , , , — David Kirkpatrick @ 2:35 pm

The release:

Researchers create the first thermal nanomotor in the world

The motor functions as a nanotransporter by moving and rotating cargo from one end of the carbon nanotube to the other

This release is available in Spanish.

Researchers from the UAB Research Park have created the first nanomotor that is propelled by changes in temperature. A carbon nanotube is capable of transporting cargo and rotating like a conventional motor, but is a million times smaller than the head of a needle. This research opens the door to the creation of new nanometric devices designed to carry out mechanical tasks and which could be applied to the fields of biomedicine or new materials.

The “nanotransporter” consists of a carbon nanotube – a cylindrical molecule formed by carbon atoms – covered with a shorter concentric nanotube which can move back and forth or act as a rotor. A metal cargo can be added to the shorter mobile tube, which could then transport this cargo from one end to the other of the longer nanotube or rotate around its axis.

Researchers are able to control these movements by applying different temperatures at the two ends of the long nanotube. The shorter tube thus moves from the warmer to the colder area and is similar to how air moves around a heater. This is the first time a nanoscale motor is created that can use changes in temperature to generate and control movements.

The movements along the longer tube can be controlled with a precision of less than the diameter of an atom. This ability to control objects at nanometre scale can be extremely useful for future applications in nanotechnology, e.g. in designing nanoelectromechanical systems with great technological potential in the fields in biomedicine and new materials.




The research has been published in the online journal Science Express (www.sciencexpress.org) and was directed by Adrian Bachtold, researcher at CIN2 (Nanoscience and Nanotechnology Research Centre, CSIC-ICN) and at CNM (National Microelectronics Centre, CSIC), and by Eduardo Hernández at ICMAB (Institute of Material Science, CSIC), all of which form part of the UAB Research Park. Research members included Riccardo Rurali from the UAB Department of Electronic Engineering, and Amelia Barreiro and Joel Moser from CIN2 (CSIC-ICN), with the collaboration of researchers from the University of Vienna, Austria and from EPFL in Lausanne, Switzerland.

The Catalan Institute of Nanotechnology is a private foundation publicly funded by the Catalan Government and Universitat Autònoma de Barcelona. The Nanoscience and Nanotechnology Research Centre is run jointly by the Spanish National Research Council and the Catalan Institute of Nanotechnology. The National Microelectronics Centre (CNM) and the Institute of Material Sciences (ICMAB) both belong to the Spanish National Research Council. The UAB Research Park – a joint alliance between UAB, CSIC and IRTA (Institute for Food and Agricultural Research and Technology) – is formed by a group of research centres and consortiums located at the Bellaterra campus of Universitat Autònoma de Barcelona.

(Hat tip: KurzweilAI.net)