David Kirkpatrick

October 16, 2010

Cool nanotech image — graphene

Filed under: et.al., Science, Technology — Tags: , , , , , — David Kirkpatrick @ 9:12 am

Actually the accompanying article is pretty cool, too, so do take the time to check it out.

But now, the image …

This image of a single suspended sheet of graphene taken with the TEAM 0.5, at Berkeley Lab’s National Center for Electron Microscopy shows individual carbon atoms (yellow) on the honeycomb lattice.

Also from the link:

In the current study, the team made graphene nanoribbons using a nanowire mask-based fabrication technique. By measuring the conductance fluctuation, or ‘noise’ of electrons in graphene nanoribbons, the researchers directly probed the effect of quantum confinement in these structures. Their findings map the electronic band structure of these graphene nanoribbons using a robust electrical probing method. This method can be further applied to a wide array of nanoscale materials, including graphene-based electronic devices.

“It amazes us to observe such a clear correlation between the noise and the band structure of these graphene nanomaterials,” says lead author Guangyu Xu, a physicist at University of California, Los Angeles. “This work adds strong support to the quasi-one-dimensional subband formation in graphene nanoribbons, in which our method turns out to be much more robust than conductance measurement.”

One more bit from the link, from the intro actually:

In last week’s announcement of the Nobel Prize in Physics, the Royal Swedish Academy of Sciences lauded graphene’s “exceptional properties that originate from the remarkable world of quantum physics.” If it weren’t hot enough before, this atomically thin sheet of carbon is now officially in the global spotlight.

So expect to hear a lot more about graphene in the coming months. Of course if you’re a regular reader of this blog, you’ve been getting a pretty steady (aside from the last month of light blogging) diet of graphene since almost day one (since February 2008 to be exact).