David Kirkpatrick

September 10, 2010

Graphene could speed up DNA sequencing

I’ve blogged on this topic before (and on this very news bit in the second post from the link), but this just reiterates the versatility of graphene and why the material has so many scientists, researchers and entrepreneurs so excited.

From the second link:

By drilling a tiny pore just a few-nanometers in diameter, called a , in the graphene membrane, they were able to measure exchange of ions through the pore and demonstrated that a long  can be pulled through the graphene nanopore just as a thread is pulled through the eye of a needle.

“By measuring the flow of ions passing through a nanopore drilled in graphene we have demonstrated that the thickness of graphene immersed in liquid is less then 1 nm thick, or many times thinner than the very thin membrane which separates a single animal or human cell from its surrounding environment,” says lead author Slaven Garaj, a Research Associate in the Department of Physics at Harvard. “This makes graphene the thinnest membrane able to separate two liquid compartments from each other. The thickness of the membrane was determined by its interaction with water molecules and ions.”

September 8, 2010

Graphene research may lead to electronics improvement

A fairly radical improvement. Try highly efficient, very-low-heat producing and smaller electronics devices. I enjoy blogging about nanotech research with real promise for market applications.

From the link:

NIST recently constructed the world’s most powerful and stable scanning-probe microscope, with an unprecedented combination of low temperature (as low as 10 millikelvin, or 10 thousandths of a degree above absolute zero), ultra-high vacuum and high . In the first measurements made with this instrument, the team has used its power to resolve the finest differences in the electron energies in graphene, atom-by-atom.

“Going to this resolution allows you to see new physics,” said Young Jae Song, a postdoctoral researcher who helped develop the instrument at NIST and make these first measurements.

And the new physics the team saw raises a few more questions about how the electrons behave in graphene than it answers.

Because of the geometry and electromagnetic properties of graphene’s structure, an electron in any given energy level populates four possible sublevels, called a “quartet.” Theorists have predicted that this quartet of levels would split into different energies when immersed in a magnetic field, but until recently there had not been an instrument sensitive enough to resolve these differences.

“When we increased the magnetic field at extreme low temperatures, we observed unexpectedly complex quantum behavior of the electrons,” said NIST Fellow Joseph Stroscio.

What is happening, according to Stroscio, appears to be a “many-body effect” in which electrons interact strongly with one another in ways that affect their energy levels.

October 2, 2008

Electrons and nuclei …

… are you ready for your close-up?

From the link:

Providing a glimpse into the infinitesimal, physicists have found a novel way of spying on some of the universe’s tiniest building blocks.Their “camera,” described this week in the journal Nature, consists of a special “flaw” in diamonds that can be manipulated into sensitively monitoring magnetic signals from individual electrons and atomic nuclei placed nearby.

The new work represents a dramatic sharpening of the basic approach used in nuclear magnetic resonance (NMR) and magnetic resonance imaging (MRI), which ascertain chemical structures and image inside human bodies by scanning the magnetic activity of billions of individual nuclei. The new diamond-based magnetic sensor could enable novel forms of imaging, marrying NMR’s noninvasive nature with atomic-scale spatial resolution, potentially benefiting fields ranging from materials science, spintronics, and quantum information to structural biology, neuroscience, and biomedicine.

August 11, 2008

Cloaking device becoming feasible?

From KurzweilAI.net — I’ve blogged on 3D cloaking devices before, very likely the previous KurzweilAI.net linked blog post from mid-May is an earlier report of this project. Both stories originate from UC Berkeley.

At any rate, here’s 3D cloaking part two:

Practical Cloaking Devices On The Horizon?
PhysOrg.com, Aug. 10, 2008University of California, Berkeley scientists have created a multilayered, “fishnet” metamaterial that unambiguously exhibits negative refractive index, allowing for invisibility in three dimensions for the first time, Nature magazine plans to report this week.

 
Read Original Article>>

 

Update — Here’s another take on this story, once again from PhysOrg. This time with pictures!

From the link:

Two breakthroughs in the development of metamaterials – composite materials with extraordinary capabilities to bend electromagnetic waves – are reported separately this week in the Aug. 13 advanced online issue of Nature, and in the Aug. 15 issue of Science.

Applications for a metamaterial entail altering how light normally behaves. In the case of invisibility cloaks or shields, the material would need to curve light waves completely around the object like a river flowing around a rock. For optical microscopes to discern individual, living viruses or DNA molecules, the resolution of the microscope must be smaller than the wavelength of light.

The common thread in such metamaterials is negative refraction. In contrast, all materials found in nature have a positive refractive index, a measure of how much electromagnetic waves are bent when moving from one medium to another.

In a classic illustration of how refraction works, the submerged part of a pole inserted into water will appear as if it is bent up towards the water’s surface. If water exhibited negative refraction, the submerged portion of the pole would instead appear to jut out from the water’s surface. Or, to give another example, a fish swimming underwater would instead appear to be moving in the air above the water’s surface

And here’s the image:

On the left is a schematic of the first 3-D "fishnet" metamaterial that can achieve a negative index of refraction at optical frequencies. On the right is a scanning electron microscope image of the fabricated structure, developed by UC Berkeley researchers. The alternating layers form small circuits that can bend light backwards. Image by Jason Valentine, UC Berkeley
On the left is a schematic of the first 3-D “fishnet” metamaterial that can achieve a negative index of refraction at optical frequencies. On the right is a scanning electron microscope image of the fabricated structure, developed by UC Berkeley researchers. The alternating layers form small circuits that can bend light backwards. Image by Jason Valentine, UC Berkeley