David Kirkpatrick

March 4, 2010

Nanotech and skin care

Nanotechnology is changing diverse areas from electronics to medicine and even skin care. Here’s a release from the American Academy of Dermatology that just hit the inbox:

Sizing Up Nanotechnology: How Nanosized Particles May Affect Skin Care Products

MIAMI, March 4 /PRNewswire-USNewswire/ — The rapidly growing field of nanotechnology and its future use in cosmetic products holds both enormous potential and potential concern for consumers. Currently, major cosmetic manufacturers have imposed a voluntary ban on the use of nanoparticles in products while they await a ruling from the Food and Drug Administration (FDA) regarding the safety of this technology.  However, these manufacturers know that when ingredients in products such as sunscreens and anti-aging products are converted into nanosized particles, the end product displays unique properties that can benefit the skin in ways that otherwise could not be achieved using larger-sized particles.

Speaking today at the 68th Annual Meeting of the American Academy of Dermatology (Academy), dermatologist Adnan Nasir, MD, PhD, FAAD, clinical assistant professor in the department of dermatology at the University of North Carolina in Chapel Hill, presented an overview of nanotechnology and how nanoparticles may eventually be used in cosmetic products.

“Research in the area of nanotechnology has increased significantly over the years, and I think there will be considerable growth in this area in the near future,” said Dr. Nasir. “The challenge is that a standard has not been set yet to evaluate the safety and efficacy of topical products that contain nanosized particles.”

Nanotechnology: On the Plus Side

Products incorporating nanotechnology are being developed and manufactured at an ever-growing rate, especially among clothing manufacturers that incorporate nanomaterials into fabrics to enhance stain and wrinkle resistance, and water repellence.  However, Dr. Nasir explained that a substantial proportion of patents issued for nanotechnology-based discoveries are currently in the realm of cosmetic and consumer skin care products. In fact, the cosmetic industry leads all other industries in the number of patents for nanoparticles, which have the potential to enhance sunscreens, shampoos and conditioners, lipsticks, eye shadows, moisturizers, deodorants, after-shave products and perfumes.

One example of how nanoparticles are being considered for use is to improve some of the undesirable properties of skin care products. Dr. Nasir explained that when certain ingredients are included in micrometer-sized particles, which are considerably larger than nanosized particles, the result is a product than can be cosmetically unappealing.

For example, one common ingredient in broad-spectrum sunscreens, which protect the skin from both UVA and UVB rays, is avobenzone, which can make a sunscreen greasy and very noticeable when applied to the skin. Since titanium, another common sunscreen ingredient, requires an oily mixture to dissolve, a white residue can be apparent on the skin upon application. However, when these active ingredients in sunscreens are converted into nanoparticles, they can be suspended in less greasy formulations – which seem to vanish on the skin and do not leave a residue – while retaining their ability to block UVA and UVB light.

“While widespread use of this technology is currently under evaluation, I think one of the main benefits of nanoparticles used in sunscreens will be that the particles can fit into all the nooks and crannies of the skin, packing more protection and more even coverage on the skin’s surface than microsized particles,” said Dr. Nasir. “Since sunscreen formulations using nanoparticles may be more cosmetically appealing and seem to vanish when applied, consumers may be more inclined to use them on a regular basis.”

Nanotechnology also is generating excitement for its potential use in anti-aging products. When properly engineered, nanomaterials may be able to topically deliver retinoids, antioxidants and drugs such as botulinum toxin or growth factors for rejuvenation of the skin in the future.

In anti-aging products, Dr. Nasir added that nanotechnology may allow active ingredients that would not normally penetrate the skin to be delivered to it. For example, vitamin C is an antioxidant that helps fight age-related skin damage which works best below the top layer of skin. In bulk form, vitamin C is not very stable and has difficulty penetrating the skin. However, in future formulations, nanotechnology may increase the stability of vitamin C and enhance its ability to penetrate the skin.

“Since anti-aging products that contain nanoparticles of antioxidants will be harder to make, we expect that these products will cost more than products using traditional formulations,” said Dr. Nasir. “Once these products are determined to be safe, the consumer will have to decide if the increased costs are worth the added benefits.”

Nanotechnology: Future Melanoma Treatment

Researchers also are reviewing the use of nanomaterials for the treatment of melanoma. In particular, gold, when turned into a nanomaterial called nanoshells, has been shown to be a useful treatment for melanoma in animal studies.

According to Dr. Nasir, gold nanoshells can be engineered to absorb specific wavelengths of light.  If the wavelength of light unique to a particular type of gold nanoshell is used on it, the particle generates heat. In one animal study done at MD Anderson Cancer Center in Houston, investigators joined gold nanoshells with a molecule which homes to melanoma.  When these gold nanoshells are injected into mice harboring melanoma, the nanoshells accumulate in the cancerous tissue.  When mice are illuminated with the proper wavelength of light, their tumors, laden with gold nanoshells, heat up and are effectively killed. The surrounding tissue, which lacks targeted gold nanoshells, is unharmed.

“Nanotechnology holds promise for new non-invasive treatment methods, particularly for challenging dermatologic conditions, such as atopic dermatitis and ichthyosis,” said Dr. Nasir.

Nanotechnology: More Consumer Information Needed

Because the skin is the first point of contact and the first line of defense for newly manufactured nanomaterials, Dr. Nasir noted that many dermatologists have concerns about the potential health risks posed by nanotechnology. “Although nanotechnology is an exciting area that holds enormous potential,” said Dr. Nasir, “we anxiously await the FDA’s review of the safety of nanoparticles which will determine their future role in skin care products.”

Headquartered in Schaumburg, Ill., the American Academy of Dermatology (Academy), founded in 1938, is the largest, most influential, and most representative of all dermatologic associations. With a membership of more than 16,000 physicians worldwide, the Academy is committed to: advancing the diagnosis and medical, surgical and cosmetic treatment of the skin, hair and nails; advocating high standards in clinical practice, education, and research in dermatology; and supporting and enhancing patient care for a lifetime of healthier skin, hair and nails. For more information, contact the Academy at 1-888-462-DERM (3376) or www.aad.org.

Source: American Academy of Dermatology

Web Site:  http://www.aad.org/

February 2, 2009

Nanotech fighting cancer

From KurzweilAI.net— It seems like nanotech might be the magic bullet for cancer. This technique uses gold nanospheres to fight melanoma.

Targeted nanospheres find, penetrate, then fuel burning of melanoma
PhysOrg.com, Feb. 2, 2009

Hollow gold nanospheres equipped with a targeting peptide find melanoma cells, penetrate them deeply, and then cook the tumor when bathed with near-infrared light, University of Texas M. D. Anderson Cancer Center researchers have shown.

Read Original Article>>

March 5, 2008

Lots of cool science and tech …

… from today’s KurzweilAI.net newsletter. The first two are bits about solar energy — the first on even “greener” solar panels, and the second on inkjet printing organic solar cells.

The third story is on cancer and embryonic stem cells. I look forward to the day the US government no longer bans federal funding of this research. I’m all for private research, but the fact is medical research in the US is pretty much handled through the NIH.

Here’s all three:

Greener Green Energy: Today’s solar cells give more than they take
Science News, March 1, 2008Solar power produces, per unit of energy, only about one-tenth as much carbondioxide and other harmful emissions (during manufacturing) as does conventional power generation, a new study by Brookhaven National Laboratory scientists shows.

These improvements in efficiency mean that today’s solar panels can “pay back” in only 1 to 3 years the energy needed to make them, the study concludes.

Improvements in manufacturing efficiency could reduce emissions from solar power by another 50 percent within 5 to 7 years, the researchers say.
Read Original Article>>

Konarka Announces First-Ever Demonstration of Inkjet Printed Solar Cells
nanowerk, Mar. 3, 2008Konarka Technologies has announced the company conducted the first-ever demonstration of manufacturing organic solar cells by efficient inkjet printing.

Read Original Article>>

Cancers inhibited by embryonic stem cell protein
NewScientist.com news service, March 4, 2008Northwestern University researchers have discovered that a protein, Lefty, produced by human embryonic stem cells (hESCs) can inhibit the growth and spread of breast cancer and malignant melanoma.

Similarities between stem cells and tumors–both are self-renewing and have the capacity to give rise to different cells types–previously led the researchers to find the protein Nodal, which facilitates cell growth, and suggested that stem cells must have a way to control Nodal.

The Northwestern researchers found that was Lefty. When aggressive tumor cells were exposed to the chemical environment of hESCs, which contained Lefty, their Nodal production fell sharply, and the tumor cells became less invasive and even started to die.
Read Original Article>>