David Kirkpatrick

October 20, 2010

Fresh drinking water through solar power

This has the potential to be a real game changer. Among all the other problems out there, one very pervasive issue that gets intermittent lip service is potable, or the lack thereof, water. A portable desalination device could save lives in a variety of situations.

From the link:

The portable system could also be used in remote areas where supplying energy and clean water can be logistically complex and expensive, such as desert locations or farms and small villages in developing countries.

Led by Steven Dubowsky, a professor in both the Department of Mechanical Engineering and the Department of Aeronautics and Astronautics, and graduate students Amy Bilton and Leah Kelley, the group built a small prototype of the system last spring to test algorithms they had developed to run it. They have since demonstrated that the prototype is capable of producing 80 gallons of water a day in a variety of weather conditions. They estimate that a larger version of the unit, which would cost about $8,000 to construct, could provide about 1,000 gallons of water per day. Dubowsky and his students also estimate that one C-130 cargo airplane could transport two dozen desalination units — enough to provide water for 10,000 people.

The team presented a paper reporting preliminary results about its prototype system last week at the EuroMed 2010-Desalination for Clean Water and Energy Conference.

September 10, 2010

Graphene could speed up DNA sequencing

I’ve blogged on this topic before (and on this very news bit in the second post from the link), but this just reiterates the versatility of graphene and why the material has so many scientists, researchers and entrepreneurs so excited.

From the second link:

By drilling a tiny pore just a few-nanometers in diameter, called a , in the graphene membrane, they were able to measure exchange of ions through the pore and demonstrated that a long  can be pulled through the graphene nanopore just as a thread is pulled through the eye of a needle.

“By measuring the flow of ions passing through a nanopore drilled in graphene we have demonstrated that the thickness of graphene immersed in liquid is less then 1 nm thick, or many times thinner than the very thin membrane which separates a single animal or human cell from its surrounding environment,” says lead author Slaven Garaj, a Research Associate in the Department of Physics at Harvard. “This makes graphene the thinnest membrane able to separate two liquid compartments from each other. The thickness of the membrane was determined by its interaction with water molecules and ions.”

Single ions crossing a nano bridge

Filed under: Science — Tags: , , , , , — David Kirkpatrick @ 11:11 am

Don’t see any current practical applications — aside from desalination — on this right now (but now with a proof-of-concept I bet this’ll be leveraged in new research), but it is impressively cool.

From the link:

In the Sept. 10 issue of Science, MIT researchers report that charged molecules, such as the sodium and  that form when salt is dissolved in water, can not only flow rapidly through carbon nanotubes, but also can, under some conditions, do so one at a time, like people taking turns crossing a bridge. The research was led by associate professor Michael Strano.

The new system allows passage of much smaller molecules, over greater distances (up to half a millimeter), than any existing nanochannel. Currently, the most commonly studied nanochannel is a silicon nanopore, made by drilling a hole through a silicon membrane. However, these channels are much shorter than the new nanotube channels (the nanotubes are about 20,000 times longer), so they only permit passage of large molecules such as DNA or polymers — anything smaller would move too quickly to be detected.

Strano and his co-authors — recent PhD recipient Chang Young Lee, graduate student Wonjoon Choi and postdoctoral associate Jae-Hee Han — built their new nanochannel by growing a nanotube across a one-centimeter-by-one-centimeter plate, connecting two water reservoirs. Each reservoir contains an electrode, one positive and one negative. Because electricity can flow only if protons — positively charged , which make up the electric current — can travel from one electrode to the other, the researchers can easily determine whether  are traveling through the nanotube.

September 6, 2010

Self-assembling and reassembling solar cells

Okay, just yesterday I blogged that a lot of the time the mundane “a ha” moment that puts together well-known materials and processes leads to scientific advancement (the case I was referring to in the post was a simple acid bath technique that made creating solar cells much cheaper). And then again sometimes the big sexy breakthrough gets the headline (as usual) and really deserves it.

If this technique for solar cells that self-assembles the light-harvesting element in the cell, and then breaks it down for re-assembly essentially copying what plants do in their chloroplast, is able to reach acceptable levels of efficiency, it will be an absolute game-changer. Instead of a solar cell that’s (hopefully) constantly bombarded with the full effect of the sun and constantly degrading under the solar assault, these cells will essentially be completely renewed by each reassembly. No degradation over time, just a brand new light-harvesting element with a relatively simple chemical process.

From the second link:

The system Strano’s team produced is made up of seven different compounds, including the carbon nanotubes, the phospholipids, and the proteins that make up the reaction centers, which under the right conditions spontaneously assemble themselves into a light-harvesting structure that produces an electric current. Strano says he believes this sets a record for the complexity of a self-assembling system. When a surfactant — similar in principle to the chemicals that BP has sprayed into the Gulf of Mexico to break apart oil — is added to the mix, the seven components all come apart and form a soupy solution. Then, when the researchers removed the surfactant by pushing the solution through a membrane, the compounds spontaneously assembled once again into a perfectly formed, rejuvenated photocell.

“We’re basically imitating tricks that nature has discovered over millions of years” — in particular, “reversibility, the ability to break apart and reassemble,” Strano says. The team, which included postdoctoral researcher Moon-Ho Ham and graduate student Ardemis Boghossian, came up with the system based on a theoretical analysis, but then decided to build a prototype cell to test it out. They ran the cell through repeated cycles of assembly and disassembly over a 14-hour period, with no loss of efficiency.

August 23, 2010

200x fuel cell efficiency boost

The idea of a personalized energy system is very attractive. Talk about being able to go off the grid …

The release:

200-fold boost in fuel cell efficiency advances ‘personalized energy systems’

IMAGE: A new catalyst could help speed development of inexpensive home-brewed solar energy systems for powering homes and plug-in cars during the day (left) and for producing electricity from a fuel…

Click here for more information.

BOSTON, Aug. 23, 2010 — The era of personalized energy systems — in which individual homes and small businesses produce their own energy for heating, cooling and powering cars — took another step toward reality today as scientists reported discovery of a powerful new catalyst that is a key element in such a system. They described the advance, which could help free homes and businesses from dependence on the electric company and the corner gasoline station, at the 240th National Meeting of the American Chemical Society, being held here this week.

“Our goal is to make each home its own power station,” said study leader Daniel Nocera, Ph.D. “We’re working toward development of ‘personalized’ energy units that can be manufactured, distributed and installed inexpensively. There certainly are major obstacles to be overcome — existing fuel cells and solar cells must be improved, for instance. Nevertheless, one can envision villages in India and Africa not long from now purchasing an affordable basic system.”

Such a system would consist of rooftop solar energy panels to produce electricity for heating, cooking, lighting, and to charge the batteries on the homeowners’ electric cars. Surplus electricity would go to an “electrolyzer,” a device that breaks down ordinary water into its two components, hydrogen and oxygen. Both would be stored in tanks. In the dark of night, when the solar panels cease production, the system would shift gears, feeding the stored hydrogen and oxygen into a fuel cell that produces electricity (and clean drinking water as a byproduct). Such a system would produce clean electricity 24 hours a day, seven days a week — even when the sun isn’t shining.

Nocera’s report focused on the electrolyzer, which needs catalysts — materials that jumpstart chemical reactions like the ones that break water up into hydrogen and oxygen. He is with the Massachusetts Institute of Technology in Cambridge, Mass. Good catalysts already are available for the part of the electrolyzer that produces hydrogen. Lacking, however, have been inexpensive, long-lasting catalysts for the production of oxygen. The new catalyst fills that gap and boosts oxygen production by 200-fold. It eliminates the need for expensive platinum catalysts and potentially toxic chemicals used in making them.

The new catalyst has been licensed to Sun Catalytix, which envisions developing safe, super-efficient versions of the electrolyzer, suitable for homes and small businesses, within two years.

The National Science Foundation and the Chesonis Family Foundation provided funding for this study. Nocera did the research with post-doctoral researcher Mircea Dinca and doctoral candidate Yogesh Surendranath. The U.S. Department of Energy’s Advanced Research Projects Agency has recently awarded the team with a grant, which it plans to use to search for related compounds that can further increase the efficiency of its electrolyzer technology. The team hopes that nickel-borate belongs to a family of compounds that can be optimized for super-efficient, long-term energy storage technologies.

###

The American Chemical Society is a non-profit organization chartered by the U.S. Congress. With more than 161,000 members, ACS is the world’s largest scientific society and a global leader in providing access to chemistry-related research through its multiple databases, peer-reviewed journals and scientific conferences. Its main offices are in Washington, D.C., and Columbus, Ohio.

Update 9/2/10 — Someone really likes this story because here’s a follow-up release from yesterday.

August 19, 2010

Graphene and DNA sequencing

News on potential applications of graphene is always interesting, but I’ll have to admit I’d like see more actual market-ready solutions. This news is both intriguing and promising, but the nut graf contains those dreaded words, “could help (insert the gist of any story here).” It’ll be a pretty exciting day when I blog about something that will help, instead of could help with graphene as the key helping element.

From the second link:

Layers of graphene that are only as thick as an atom could help make human DNA sequencing faster and cheaper. Harvard University and MIT researchers have shown that sheets of graphene could be a big improvement over membranes that are currently used for nanopore sequencing–a technique that promises to speed up and simplify the sequencing of long strands of DNA.

And:

The researchers create their membrane by placing a graphene flake over a 200-nanometer-wide opening in the middle of a silicon-nitride surface. Then they drill a few pores, just nanometers wide, in the graphene with an electron beam. The membrane is finally immersed in a salt solution that’s in contact with silver electrodes. The researchers observed dips in the current when a DNA strand passed through the pore, showing that the method could eventually be used to identify DNA bases.

July 14, 2010

Cool computer technology — an invisible mouse

Via KurzweilAI.net — um, what’s to say here. This is just amazingly cool. Can’t say the tech is totally there from a user standpoint — one commenter mentioned the lag time would be disconcerting at this stage of technology — but the proof-of-concept is utterly amazing.

An invisible computer mouse

MIT Media Lab researchers have developed Mouseless, an invisible computer mouse that costs about $20 to build.

It uses an infrared (IR) laser beam and an infrared camera. The laser beam module creates a plane of IR laser just above the surface the computer sits on. The user cups their hand, and the laser beam lights up the hand that is in contact with the surface. The IR camera detects those bright IR blobs using computer vision. The change in the position and arrangements of these blobs are interpreted as mouse cursor movement and mouse clicks.

More info: Fluid Interfaces Group | MIT Media Lab

Here’s a video of the no-mouse mouse in action (feel free to ignore the attempt at cleverness with the Tom and Jerry cartoon intro.)

July 12, 2010

Fibers that detect and produce sound

The latest in the world of smart textiles is sound detecting and producing fibers.

From the second link, the release:

MIT researchers create fibers that can detect and produce sound

Could lead to clothes that capture speech, tiny filaments to measure blood flow or pressure

IMAGE: MIT researchers have demonstrated that they can manufacture acoustic fibers with flat surfaces, like those shown here, as well as fibers with circular cross sections. The flat fibers could prove…

Click here for more information.

CAMBRIDGE, Mass. — For centuries, “man-made fibers” meant the raw stuff of clothes and ropes; in the information age, it’s come to mean the filaments of glass that carry data in communications networks. But to Yoel Fink, an Associate professor of Materials Science and principal investigator at MIT’s Research Lab of Electronics, the threads used in textiles and even optical fibers are much too passive. For the past decade, his lab has been working to develop fibers with ever more sophisticated properties, to enable fabrics that can interact with their environment.

In the August issue of Nature Materials, Fink and his collaborators announce a new milestone on the path to functional fibers: fibers that can detect and produce sound. Applications could include clothes that are themselves sensitive microphones, for capturing speech or monitoring bodily functions, and tiny filaments that could measure blood flow in capillaries or pressure in the brain. The paper, whose authors also include Shunji Egusa, a former postdoc in Fink’s lab, and current lab members Noémie Chocat and Zheng Wang, appeared on Nature Materials‘ website on July 11.

Ordinary optical fibers are made from a “preform,” a large cylinder of a single material that is heated up, drawn out, and then cooled. The fibers developed in Fink’s lab, by contrast, derive their functionality from the elaborate geometrical arrangement of several different materials, which must survive the heating and drawing process intact.

The heart of the new acoustic fibers is a plastic commonly used in microphones. By playing with the plastic’s fluorine content, the researchers were able to ensure that its molecules remain lopsided — with fluorine atoms lined up on one side and hydrogen atoms on the other — even during heating and drawing. The asymmetry of the molecules is what makes the plastic “piezoelectric,” meaning that it changes shape when an electric field is applied to it.

In a conventional piezoelectric microphone, the electric field is generated by metal electrodes. But in a fiber microphone, the drawing process would cause metal electrodes to lose their shape. So the researchers instead used a conducting plastic that contains graphite, the material found in pencil lead. When heated, the conducting plastic maintains a higher viscosity — it yields a thicker fluid — than a metal would.

Not only did this prevent the mixing of materials, but, crucially, it also made for fibers with a regular thickness. After the fiber has been drawn, the researchers need to align all the piezoelectric molecules in the same direction. That requires the application of a powerful electric field — 20 times as powerful as the fields that cause lightning during a thunderstorm. Anywhere the fiber is too narrow, the field would generate a tiny lightning bolt, which could destroy the material around it.

Despite the delicate balance required by the manufacturing process, the researchers were able to build functioning fibers in the lab. “You can actually hear them, these fibers,” says Chocat, a graduate student in the materials science department. “If you connected them to a power supply and applied a sinusoidal current” — an alternating current whose period is very regular — “then it would vibrate. And if you make it vibrate at audible frequencies and put it close to your ear, you could actually hear different notes or sounds coming out of it.” For their Nature Materials paper, however, the researchers measured the fiber’s acoustic properties more rigorously. Since water conducts sound better than air, they placed it in a water tank opposite a standard acoustic transducer, a device that could alternately emit sound waves detected by the fiber and detect sound waves emitted by the fiber.

In addition to wearable microphones and biological sensors, applications of the fibers could include loose nets that monitor the flow of water in the ocean and large-area sonar imaging systems with much higher resolutions: A fabric woven from acoustic fibers would provide the equivalent of millions of tiny acoustic sensors.

Zheng, a research scientist in Fink’s lab, also points out that the same mechanism that allows piezoelectric devices to translate electricity into motion can work in reverse. “Imagine a thread that can generate electricity when stretched,” he says.

Ultimately, however, the researchers hope to combine the properties of their experimental fibers in a single fiber. Strong vibrations, for instance, could vary the optical properties of a reflecting fiber, enabling fabrics to communicate optically.

###

Source: “Multimaterial piezoelectric fibres.” S. Egusa, Z. Wang, N. Chocat, Z. M. Ruff, A. M. Stolyarov, D. Shemuly, F. Sorin, P. T. Rakich, J. D. Joannopoulos, and Y. Fink. Nature Materials, 11 July 2010.

April 19, 2010

An invisibility cloak flaw

To date all the invisibility cloak tech blogging I’ve done has covered the rapid development of this branch of science. Here’s some virtual ink on the other side of the cloaking coin.

From the second link:

Since then, Baile Zhang and buddies at the Massachusetts Institute of Technology in Cambridge, have been busy looking for the weak point in this idea and now think they’ve found it. Today, they point out that carpet cloaks have a flaw that makes the objects within them detectable.

The problem, they say, is that isotropic cloaks cannot work perfectly. Here’s why. Light can be thought of as a series of wavefronts each with a certain amount of energy. Ordinarily, the direction of energy propagation is at right angles to these wavefronts.

However, in an invisibility cloak, this perpendicular relationship becomes distorted as the light waves are steered. That’s what an anisotropic material does. But an isotropic material cannot do this–the energy always propagates at right angles to the wavefronts. This limitation means that isotropic materials cannot hide objects in the way Pendry suggests.

Zhang and co go on to prove their assertion by tracing a ray that passes through the kind of isotropic carpet cloak that Pendry suggested. What they’ve discovered will shock carpet cloakers all over the world.

According to Zhang and buddies, carpet cloaks don’t hide objects, they merely shift them to one side by an amount that is just a bit less than they are high. Crucially the effect depends on the angle at which you are looking. So when illuminated at an angle of 45 degrees, an object 0.2 units tall appears laterally shifted by 0.15 units.

If Zhang and co are correct, this could be a substantial blow for isotropic carpet cloaking. It means that the carpet cloaking effect has a limited angle of view.

April 3, 2010

Lithium-air batteries

Lithium-air batteries may be the short-term solution to lightweight and relatively efficient battery power. Major implications in terms of electric vehicles and handheld electronics.

From the link:

Yang Shao-Horn, an MIT associate professor of mechanical engineering and materials science and engineering, says that many groups have been pursuing work on lithium-air batteries, a technology that has great potential for achieving great gains in . But there has been a lack of understanding of what kinds of electrode materials could promote the electrochemical reactions that take place in these batteries.

Lithium-oxygen (also known as lithium-air) batteries are similar in principle to the lithium-ion batteries that now dominate the field of  and are a leading contender for . But because lithium-air batteries replace the heavy conventional compounds in such batteries with a carbon-based air electrode and flow of air, the batteries themselves can be much lighter. That’s why leading companies, including IBM and General Motors, have committed to major research initiatives on lithium-air technology.

For further reading here’s the MIT release that spawned this PhysOrg story.

March 7, 2010

Carbon nanotubes open new area of energy research

Nanotechnology is revolutionizing how we see and deal with electricity, everything from storage to wiring. Now a team at MIT has discovered carbon nanotubes produce electricity in an entirely new way, opening a brand new area in energy research.

From the final link:

A team of scientists at MIT have discovered a previously unknown phenomenon that can cause powerful waves of energy to shoot through minuscule wires known as carbon nanotubes. The discovery could lead to a new way of producing electricity, the researchers say.

The phenomenon, described as thermopower waves, “opens up a new area of energy research, which is rare,” says Michael Strano, MIT’s Charles and Hilda Roddey Associate Professor of Chemical Engineering, who was the senior author of a paper describing the new findings that appeared in  on March 7. The lead author was Wonjoon Choi, a doctoral student in mechanical engineering.

Like a collection of flotsam propelled along the surface by waves traveling across the ocean, it turns out that a thermal wave — a moving pulse of heat — traveling along a microscopic wire can drive electrons along, creating an electrical current.

The key ingredient in the recipe is carbon nanotubes — submicroscopic hollow tubes made of a chicken-wire-like lattice of carbon atoms. These tubes, just a few billionths of a meter () in diameter, are part of a family of novel carbon molecules, including buckyballs and graphene sheets, that have been the subject of intensive worldwide research over the last two decades.

January 19, 2010

Nanotech to replace drug-releasing stents

Via KurzweilAI.net — Nanotechnology is getting a reputation for innovative cancer treatments, but this breakthrough shows nanotech has a lot to offer many areas of medicine.

New ‘nanoburrs’ could add to arsenal of therapies against heart disease
Physorg.com, Jan. 18, 2010

Researchers at MIT and Harvard Medical School have built targeted nanoparticles that can cling to artery walls and slowly release medicine, an advance that potentially provides an alternative to drug-releasing stents in some patients with cardiovascular disease.
Read Original Article>>

January 11, 2010

Gambling and investing

Filed under: Business, et.al. — Tags: , , , , — David Kirkpatrick @ 2:16 pm

Looks like the skills that make for a strong poker player can help you improve your investing strategies. (I should quickly add the title could be a little misleading because I consider poker a gambling game of skill, not chance. Much like investing.)

From the link:

The psychological issues that drive investing and gambling decisions aren’t merely similar. They are “identical,” says Andrew Lo, director of the Massachusetts Institute of Technology Laboratory for Financial Engineering and one of the leaders in the field of behavioral finance (listen to our podcast with Lo). It’s easy to find investment professionals and professional poker players who agree. Says poker pro Daniel Negreanu, who holds four World Series of Poker bracelets and two World Poker Tour Championship titles: “Having emotional stability and emotional control is key to both investing and poker.”

December 3, 2009

Electricity without greenhouse gases

And using natural gas for fuel. Regardless what your thoughts are on anthropogenic global warming, the goal of reducing greenhouse gas rests on solid scientific ground. Natural gas is a plentiful commodity in the oil and gas sector and this technology sounds like a great alternative to coal and dirtier petroleum.

The release:

Proposed system uses solid-oxide fuel cells to produce power without sending greenhouse gases into the atmosphere

A new type of natural-gas electric power plant proposed by MIT researchers could provide electricity with zero carbon dioxide emissions to the atmosphere, at costs comparable to or less than conventional natural-gas plants, and even to coal-burning plants. But that can only come about if and when a price is set on the emission of carbon dioxide and other greenhouse gases — a step the U.S. Congress and other governments are considering as a way to halt climate change.

Postdoctoral associate Thomas Adams and Paul I. Barton, the Lammot du Pont Professor of Chemical Engineering, propose a system that uses solid-oxide fuel cells, which produce power from fuel without burning it. The system would not require any new technology, but would rather combine existing components, or ones that are already well under development, in a novel configuration (for which they have applied for a patent). The system would also have the advantage of running on natural gas, a relatively plentiful fuel source — proven global reserves of natural gas are expected to last about 60 years at current consumption rates — that is considered more environmentally friendly than coal or oil. (Present natural-gas power plants produce an average of 1,135 pounds of carbon dioxide for every megawatt-hour of electricity produced — half to one-third the emissions from coal plants, depending on the type of coal.)

Absent any price for carbon emissions, Adams says, when it comes to generating electricity “the cheapest fuel will always be pulverized coal.” But as soon as there is some form of carbon pricing — which attempts to take into account the true price exacted on the environment by greenhouse gas emissions — “ours is the lowest price option,” he says, as long as the pricing is more than about $15 per metric ton of emitted carbon dioxide. Such a pricing mechanism would be put in place, for example, by the Waxman-Markey “American Clean Energy and Security Act” that was passed by the U.S. House of Representatives in July, through its “cap and trade” provisions. (A corresponding bill has not yet reached the floor of the U.S. Senate.) If the program becomes law, the actual price per ton of carbon would vary, being determined through the free market.

Natural gas already accounts for 22 percent of all U.S. electricity production, and that percentage is likely to rise in coming years if carbon prices are put into effect. For these and other reasons, a system that can produce electricity from natural gas at a competitive price with zero greenhouse gas emissions could prove to be an attractive alternative to conventional power plants that use fossil fuels.

The system proposed by Adams and Barton would not emit into the air any carbon dioxide or other gases believed responsible for global warming, but would instead produce a stream of mostly pure carbon dioxide. This stream could be harnessed and stored underground relatively easily, a process known as carbon capture and sequestration (CCS). One additional advantage of the proposed system is that, unlike a conventional natural gas plant with CCS that would consume significant amounts of water, the fuel-cell based system actually produces clean water that could easily be treated to provide potable water as a side benefit, Adams says.

How they did it: Adams and Barton used computer simulations to analyze the relative costs and performance of this system versus other existing or proposed generating systems, including natural gas or coal-powered systems incorporating carbon capture technologies.

Combined-cycle natural gas plants — the most efficient type of fossil-fuel power plants in use today — could be retrofitted with a carbon-capture system to reduce the output of greenhouse gases by 90 percent. But the MIT researchers’ study found that their proposed system could eliminate virtually 100 percent of these emissions, at a comparable cost for the electricity produced, and with even a higher efficiency (in terms of the amount of electricity produced from a given amount of fuel).

Next steps:
Although no full-scale plants using such systems have yet been built, the basic principles have been demonstrated in a number of smaller units including a 250-kilowatt plant, and prototype megawatt-scale plants are planned for completion around 2012. Actual utility-scale power plants would likely be on the order of 500 megawatts, Adams says. And because fuel cells, unlike conventional turbine-based generators, are inherently modular, once the system has been proved at small size it can easily be scaled up. “You don’t need one large unit,” Adams explains. “You can do hundreds or thousands of small ones, run in parallel.” Adams says practical application of such systems is “not very far away at all,” and could probably be ready for commercialization within a few years. “This is near-horizon technology,” he says.

Source: Journal of Power Sources: “High-efficiency power production from natural gas with carbon capture”

Funding: The research was partly funded from the BP-MIT Conversion Research Program

November 6, 2009

Texting and driving just don’t mix — even hands-free

An interesting blog post from Dan Ariely, a visiting professor at MIT’s Media Library on the “tiny irregularities” of texting while driving:

Sad story out in the New York Times describing growing concerns about texting while driving. In Britain, a woman was sentenced to a 21-month sentence after it was found that she had been texting while driving, which resulted in the death of a 24-year old design student. In many ways, texting while driving illustrates a case in which tiny, individual irrational decisions can accumulate and cause widespread suffering, not only for the individuals who are texting, but their unsuspecting victims. Unlike cases of drunk driving, in which the driver’s decision making abilities are impaired, drivers who text are at their full wits to wait until they’ve pulled over to check their texts, and yet in the process they routinely underestimate the risk they impose to themselves and others.

The professor was quite wrong, however, on one aspect of the issue:

… we can hope that cell phone companies are continuing to explore voice activation technologies that can read text messages aloud and also transcribe them from voice — thereby by-passing the problem altogether.

In researching web content I created for an insurance website, I came across this research that finds hands-free listening  to mobile devices is not much safer than hands-on cell phone use because the issue is the distraction of the usage, not merely taking eyes off the road ahead (all bold text my emphasis):

Five states currently ban the use of hand-held cell phones in favor of hands-free devices while driving. However, several studies have shown that there is little difference between the two when it comes to minding the road ahead. Both hand-held and hands-free devices involve listening. The act of listening is what distracts drivers from paying attention to the road. A study conducted by Carnegie Mellon University placed participants in a functional MRI scanner that allowed researchers to observe brain activity while the subjects “drove” on a computerized roadway. Without distractions, the area of the brain that lit up most was the area involved in spatial perception (knowing where you are and what’s around you). When the same subjects were tasked with listening to and correctly answering a series of questions as they drove, the area of the brain that lit up most was the area involving language comprehension, while activity in the spatial perception area of the brain decreased by as much as 37 percent. Multitasking places high demands on the brain.

October 18, 2009

A beautiful nanotech image

I regularly have blog posts that feature nanotech images, and sometimes I just run a nanotechnology image because it is so beautiful. This is one of those times

nikon2004
2004: Quantum dot nanocrystals deposited on a silicon substrate (200x), Polarized reflected light. / Seth A. Coe-Sullivan, Massachusetts Institute of Technology. Courtesy of Nikon Small World. The 2004 runners up.

October 2, 2009

Synthetic biology in the marketplace

Synthetic biology is one of those technologies you’re going to be hearing more and more of in the near future. That is if you haven’t already run across the field after this article was published in the September 28, 2009, issue of the New Yorker. Here’s some news about Ginkgo BioWorks, a company in the marketplace right now creating well, synthetic biological material.

From the final link:

In a warehouse building in Boston, wedged between a cruise-ship drydock and Au Bon Pain’s corporate headquarters, sits Ginkgo BioWorks, a new synthetic-biology startup that aims to make biological engineering easier than baking bread. Founded by five MIT scientists, the company offers to assemble biological parts–such as strings of specific genes–for industry and academic scientists.

“Think of it as rapid prototyping in biology–we make the part, test it, and then expand on it,” says Reshma Shetty, one of the company’s cofounders. “You can spend more time thinking about the design, rather than doing the grunt work of making DNA.” A very simple project, such as assembling two pieces of DNA, might cost $100, with prices increasing from there.

Synthetic biology is the quest to systematically design and build novel organisms that perform useful functions, such as producing chemicals, using genetic-engineering tools. The field is often considered the next step beyond metabolic engineering because it aims to completely overhaul existing systems to create new functionality rather than improve an existing process with a number of genetic tweaks.

September 11, 2009

Carbon nanotubes and electronics

Via KurzweilAI — This post is a twofer on nanotech and carbon nanotubes.

From the “two” link:

Using Nanotubes in Computer Chips

PhysOrg.com, Sep. 10, 2009

A simple enough manufacturing process developed by MITresearchers could enable carbon nanotubes to replace the vertical wires in chips, permitting denser packing ofcircuits.

Read Original Article>>

And from the “fer” link:

Capsules for Self-Healing Circuits

Technology Review, Sept. 11, 2009

Nanotube-filled capsules could restore conductivity to damaged electronics, University of Illinois at Urbana-Champaign researchers have found.

Read Original Article>>

September 4, 2009

Guidelines for ushering in the Singularity

Via KurzweilAI.net — Singularity news is always fun stuff.

The Singularity and the Fixed Point

Technology Review, Sept. 4, 2009

If one is trying to build an intelligent machine capable of devising more intelligent machines, a few guidelines are essential, says MIT professor Edward Boyden:

– Find a way to build in motivation, and also motivation amplification–the continued desire to build in self-sustaining motivation, as intelligence amplifies.

– Avoid paralysis of decision making from too many choices and a “societal fixed point” outcome that self-reinforces, remaining in the status quo.

Read Original Article>>

July 2, 2009

Expanding your search engine horizons

Filed under: Technology — Tags: , , , , , — David Kirkpatrick @ 1:26 pm

There’s more out there in the online search space than Google, Microsoft’s Live … — er, Bing, and Yahoo. The new Wolfram|Alpha decision engine comes to mind.

Here’s five more search options from CIO.com.

Number three from the link:

Hunch

Hunch is all about a decision engine, asking the user 10 questions or less to arrive at a solution to a problem or concern. At the core of the search site is a question selection algorithm built by Hunch’s small collection of Massachusetts Institute of Technology computer scientists with backgrounds in machine learning.

The design is such that questions are asked just like a human would structure a line of questioning. The questions asked vary based on what has already been asked and how it was answered.

Click here to find out more! And Hunch is another search engine with a social aspect. The smarts are a collection of common knowledge derived from users who can submit new topics, questions to ask and decision outcomes.Hunch says its algorithm is a mathematical framework married with a group of users who provide “personality by contributing to it and making it clever, funny, and nuanced.”

June 18, 2009

Cheaper OLEDs

I haven’t had an opportunity to blog about OLEDs in a while, but this looks like a real cost breakthrough. OLEDs have the potential to revolutionize lighting and display technology.

From the link:

Organic light-emitting diodes (OLEDs) are steadily making their way into commercial devices like cell phones and flat-screen displays. They’re fabricated with layers of organic polymers, which make them flexible, and they use less power and less expensive materials than liquid crystal displays.

The downside is that because the polymers react easily with oxygen and water, OLEDs are expensive to produce–they have to be created in high-vacuum chambers–and they need extra protective packaging layers to make sure that once they’re integrated into display devices, they don’t degrade when exposed to air or moisture.

MIT chemical-engineering professor Karen Gleason and MIT postdoc Sreeram Vaddiraju have developed a process that aims to solve the problems of high fabrication costs and instability for OLEDs while still maintaining their flexibility. Gleason’s solution is a hybrid light-emitting diode, or HLED. The device would incorporate both organic and inorganic layers, combining the flexibility of an OLED with the stability of an inorganic light-emitting material. “The idea is to have a mixed bag and capture the qualities that allow inexpensive fabrication and stability,” Gleason says.

April 15, 2009

MIT Media Lab’s Sixth Sense

No introductions necessary here — this is simply cool. Very cool.

From the link:

The wunderkinds at MIT’s Media Lab (Fluid Interfaces Group) have developed a gesture-controlled wearable computing device that feeds you relevant information and turns any surface into an interactive display. Called the Sixth Sense, the gadget relies on certain gestures and on object recognition to call up virtual gadgets and Web-based information, in a way that conjures up the movie Minority Report.

 

Sixth Sense by Pranav Mistry, Pattie Maes and MIT's Fluid Interfaces Group

Sixth Sense aims to integrate information and tech into everyday life.

 

The team built the Sixth Sense $350 prototype using off-the-shelf components—a simple web cam and portable battery-powered projector with a small mirror—that are fashioned into a pendant-style necklace that communicates with a cell phone.

When might Sixth Sense hit retail shelves? There’s no release date, and MIT Associate Professor and Founder of the school’s Fluid Interfaces Group Pattie Maes calls it “very much a work in progress.” (Perfecting the image recognition, for example, is an ongoing challenge.) Still, the MIT team says it has the potential to be made available today in a limited form.

Quick list of some of this device’s capabilities: Make a call, Call up a map, Take pictures, Create multimedia reading experiences, Call up e-mail, Get flight updates, Check the time, Get product information and Feed you information on people. You get the idea. Just wow.

April 2, 2009

Virus batteries

Pretty amazing technology.

The release:

MIT virus battery could power cars, electronic devices

CAMBRIDGE, Mass–For the first time, MIT researchers have shown they can genetically engineer viruses to build both the positively and negatively charged ends of a lithium-ion battery.

The new virus-produced batteries have the same energy capacity and power performance as state-of-the-art rechargeable batteries being considered to power plug-in hybrid cars, and they could also be used to power a range of personal electronic devices, said Angela Belcher, the MIT materials scientist who led the research team.

The new batteries, described in the April 2 online edition of Science, could be manufactured with a cheap and environmentally benign process: The synthesis takes place at and below room temperature and requires no harmful organic solvents, and the materials that go into the battery are non-toxic.

In a traditional lithium-ion battery, lithium ions flow between a negatively charged anode, usually graphite, and the positively charged cathode, usually cobalt oxide or lithium iron phosphate. Three years ago, an MIT team led by Belcher reported that it had engineered viruses that could build an anode by coating themselves with cobalt oxide and gold and self-assembling to form a nanowire.

In the latest work, the team focused on building a highly powerful cathode to pair up with the anode, said Belcher, the Germeshausen Professor of Materials Science and Engineering and Biological Engineering. Cathodes are more difficult to build than anodes because they must be highly conducting to be a fast electrode, however, most candidate materials for cathodes are highly insulating (non-conductive).

To achieve that, the researchers, including MIT Professor Gerbrand Ceder of materials science and Associate Professor Michael Strano of chemical engineering, genetically engineered viruses that first coat themselves with iron phosphate, then grab hold of carbon nanotubes to create a network of highly conductive material.

Because the viruses recognize and bind specifically to certain materials (carbon nanotubes in this case), each iron phosphate nanowire can be electrically “wired” to conducting carbon nanotube networks. Electrons can travel along the carbon nanotube networks, percolating throughout the electrodes to the iron phosphate and transferring energy in a very short time.

The viruses are a common bacteriophage, which infect bacteria but are harmless to humans.

The team found that incorporating carbon nanotubes increases the cathode’s conductivity without adding too much weight to the battery. In lab tests, batteries with the new cathode material could be charged and discharged at least 100 times without losing any capacitance. That is fewer charge cycles than currently available lithium-ion batteries, but “we expect them to be able to go much longer,” Belcher said.

The prototype is packaged as a typical coin cell battery, but the technology allows for the assembly of very lightweight, flexible and conformable batteries that can take the shape of their container.

Last week, MIT President Susan Hockfield took the prototype battery to a press briefing at the White House where she and U.S. President Barack Obama spoke about the need for federal funding to advance new clean-energy technologies.

Now that the researchers have demonstrated they can wire virus batteries at the nanoscale, they intend to pursue even better batteries using materials with higher voltage and capacitance, such as manganese phosphate and nickel phosphate, said Belcher. Once that next generation is ready, the technology could go into commercial production, she said.

 

###

 

Lead authors of the Science paper are Yun Jung Lee and Hyunjung Yi, graduate students in materials science and engineering. Other authors are Woo-Jae Kim, postdoctoral fellow in chemical engineering; Kisuk Kang, recent MIT PhD recipient in materials science and engineering; and Dong Soo Yun, research engineer in materials science and engineering.

The research was funded by the Army Research Office Institute of the Institute of Collaborative Technologies, and the National Science Foundation through the Materials Research Science and Engineering Centers program.

March 17, 2009

PC circa 2019

Filed under: Technology — Tags: , , , — David Kirkpatrick @ 2:17 pm

At least according to MIT’s Media Lab.

From the link:

One thing everyone seems to agree on: The PC of 2019 won’t look like today’s laptops. “I’m not seeing people carrying anything that looks like a book,” says Dan Siewiorek, a professor of computer science and electrical and computer engineering at Carnegie Mellon University and director of the university’s Human-Computer Interaction Institute. “It would be like a phone or a ring or watch. It will probably take multiple form factors.”

March 12, 2009

Nanoball batteries

Via KurzweilAI.net — Very interesting nanotech!

‘Nanoball’ batteries could recharge car in minutes
New Scientist Tech, Mar. 12, 2009

MIT scientists have designed an experimental battery that charges about 100 times as fast as normal lithium ion batteries.

It contains a cathode made up of 50-nanometer-wide nanoballs of lithium iron phosphate. If cellphone batteries can be made using the material, they could charge in 10 seconds; bigger batteries for plug-in hybrid electric cars could charge in just 5 minutes, vs. 8 for existing batteries.

 
Read Original Article>>

March 4, 2009

Nanostitching improves aerospace materials

Nanotech news from MIT.

The release:

MIT: ‘Nanostitching’ could strengthen airplane skins, more

CAMBRIDGE, Mass.–MIT engineers are using carbon nanotubes only billionths of a meter thick to stitch together aerospace materials in work that could make airplane skins and other products some 10 times stronger at a nominal increase in cost.

Moreover, advanced composites reinforced with nanotubes are also more than one million times more electrically conductive than their counterparts without nanotubes, meaning aircraft built with such materials would have greater protection against damage from lightning, said Brian L. Wardle, the Charles Stark Draper Assistant Professor in the Department of Aeronautics and Astronautics.

Wardle is lead author of a theoretical paper on the new nanotube-reinforced composites that will appear in the Journal of Composite Materials (http://jcm.sagepub.com/). He also described the work as keynote speaker at a Society of Plastics Engineers conference this week.

The advanced materials currently used for many aerospace applications are composed of layers, or plies, of carbon fibers that in turn are held together with a polymer glue. But that glue can crack and otherwise result in the carbon-fiber plies coming apart. As a result, engineers have explored a variety of ways to reinforce the interface between the layers by stitching, braiding, weaving or pinning them together.

All of these processes, however, are problematic because the relatively large stitches or pins penetrate and damage the carbon-fiber plies themselves. “And those fiber plies are what make composites so strong,” Wardle said.

So Wardle wondered whether it would make sense to reinforce the plies in advanced composites with nanotubes aligned perpendicular to the carbon-fiber plies. Using computer models of how such a material would fracture, “we convinced ourselves that reinforcing with nanotubes should work far better than all other approaches,” Wardle said. His team went on to develop processing techniques for creating the nanotubes and for incorporating them into existing aerospace composites, work that was published last year in two separate journals.

How does nanostitching work? The polymer glue between two carbon-fiber layers is heated, becoming more liquid-like. Billions of nanotubes positioned perpendicular to each carbon-fiber layer are then sucked up into the glue on both sides of each layer. Because the nanotubes are 1000 times smaller than the carbon fibers, they don’t detrimentally affect the much larger carbon fibers, but instead fill the spaces around them, stitching the layers together.

“So we’re putting the strongest fibers known to humankind [the nanotubes] in the place where the composite is weakest, and where they’re needed most,” Wardle said. He noted that these dramatic improvements can be achieved with nanotubes comprising less than one percent of the mass of the overall composite. In addition, he said, the nanotubes should add only a few percent to the cost of the composite, “while providing substantial improvements in bulk multifunctional properties.”

 

###

 

Wardle’s co-authors on the Journal of Composite Materials paper are Joaquin Blanco, a visiting graduate student in the Department of Aeronautics and Astronautics, Enrique J. Garcia SM ’06, and Roberto Guzman deVilloria, a postdoctoral associate in the department.

This research was sponsored by MIT’s Nano-Engineered Composite aerospace STructures (NECST) Consortium (necst.mit.edu).

Written by Elizabeth Thomson, MIT News Office

November 13, 2008

MIT study on cap-and-trade greenhouse gas programs

Analysis from researchers at MIT’s Center for Energy and Environmental Policy Research.

The release/article:

MIT analysis shows how cap-and-trade plans can cut greenhouse emissions

David Chandler, MIT News Office
November 13, 2008

 

Researchers at MIT’s Center for Energy and Environmental Policy Research have produced a report concerning key design issues of proposed “cap-and-trade” programs that are under consideration in the United States as a way of curbing greenhouse gas emissions. The first contribution of the three-part study found that, based on an examination of the European Union’s system and of similar U.S. programs for other emissions, such a program can indeed be effective in reducing emissions without having a significant economic impact.

“The European experience confirms much of what has been learned from similar U.S. systems for other emissions, namely, that cap-and-trade systems can be constructed, that markets emerge to facilitate trading, that emissions are reduced efficiently, and that the effects on affected industries are less than predicted,” said A. Denny Ellerman, the study’s lead author and a senior lecturer in the MIT Sloan School of Management.

The study found that the most controversial aspect of the European program was how to allocate the permitted emissions levels to different producers. Initial free allocation of allowances, they found, was the necessary price for gaining political acceptance, as it has been in U.S. systems. Over time, the clearly established trend in the E.U. is to phase out the free allocation of permits in favor of auctioning them.

The second part of the report looked at mechanisms that can be used to control the costs that will be imposed on power producers as a result of implementing a cap-and-trade system. Several alternatives were analyzed, including such things as a “safety valve,” banking and borrowing of allowances, and renewable portfolio standards. Rather than a single best choice, the study found that different mechanisms work best for addressing uncertainties associated with long-term, short-term and start-up costs.

The report’s third section examined the relationship between state and federal regulations on greenhouse gas emissions. With no federal policy now in place, many states are moving forward with their own initiatives, which range from commitments to reduce greenhouse gases to a regional, multi-state cap-and-trade program slated to begin in 2009.

While federal legislation is expected in the next few years, it is unclear how it will define the relationship between a federal cap-and-trade program and other state or regional initiatives. The report analyzes the economic and environmental impacts of the range of possible interactions between the federal program and state or regional programs.

Differences in the abatement costs among states can create economic inefficiencies that make achievement of the climate goal more costly than it need be. This inefficiency can be avoided by either federal preemption of duplicative state programs, the authors found, or by a “carve out” of more demanding state programs from the federal cap with linkage.

In addition to Ellerman, the research was co-authored by Mort D. Webster, assistant professor of engineering systems in the Engineering Systems Division; John Parsons, senior lecturer at the Sloan School and Executive Director of the Center for Energy and Environmental Policy Research (CEEPR); Henry D. Jacoby, professor of management at the Sloan School and Co-Director, Joint Program on the Science and Policy of Global Change; and Meghan McGuinness, who was a researcher in the CEEPR. The study was funded by the Doris Duke Charitable Foundation.

October 20, 2008

Solar may be ready to pop …

Filed under: Science, Technology — Tags: , , , , — David Kirkpatrick @ 12:49 am

… if this tech holds the promise that looks, well, promising.

From the link:

Sun + Water = Fuel

With catalysts created by an MIT chemist, sunlight can turn water into hydrogen. If the process can scale up, it could make solar power a dominant source of energy.

“I’m going to show you something I haven’t showed anybody yet,” said Daniel Nocera, a professor of chemistry at MIT, speaking this May to an auditorium filled with scientists and U.S. government energy officials. He asked the house manager to lower the lights. Then he started a video. “Can you see that?” he asked excitedly, pointing to the bubbles rising from a strip of material immersed in water. “Oxygen is pouring off of this electrode.” Then he added, somewhat cryptically, “This is the future. We’ve got the leaf.”

What Nocera was demonstrating was a reaction that generates oxygen from water much as green plants do during photosynthesis–an achievement that could have profound implications for the energy debate. Carried out with the help of a catalyst he developed, the reaction is the first and most difficult step in splitting water to make hydrogen gas. And efficiently generating hydrogen from water, Nocera believes, will help surmount one of the main obstacles preventing solar power from becoming a dominant source of electricity: there’s no cost-effective way to store the energy collected by solar panels so that it can be used at night or during cloudy days.

October 2, 2008

Nanoscale image of fuel-cell nanoparticle

It may not be pretty, but it is pretty cool.

From the link:

In a step toward developing better fuel cells for electric cars and more, engineers at MIT and two other institutions have taken the first images of individual atoms on and near the surface of nanoparticles key to the eco-friendly energy storage devices.

Nanoparticles made of platinum and cobalt are known to catalyze some of the chemical reactions behind fuel cells, making those reactions run up to four times faster than if platinum alone is used as the catalyst.

Left image highlights two platinum-cobalt catalyst nanoparticles (inside the dashed boxes) with a 'sandwich' structure of platinum and cobalt atoms near the surface. At right is a cross-sectional model corresponding to the lower particle, showing platinum atoms enriched in the outermost layer, cobalt enriched in the second, and additional layers containing a mixture of the two. (Image at left taken at Oak Ridge National Laboratory.) Image courtesy / Electrochemical Energy Laboratory at MIT

Left image highlights two platinum-cobalt catalyst nanoparticles (inside the dashed boxes) with a 'sandwich' structure of platinum and cobalt atoms near the surface. At right is a cross-sectional model corresponding to the lower particle, showing platinum atoms enriched in the outermost layer, cobalt enriched in the second, and additional layers containing a mixture of the two. (Image at left taken at Oak Ridge National Laboratory.) Image courtesy / Electrochemical Energy Laboratory at MIT

September 5, 2008

Improving solar through stronger sunlight

Concentrating sunlight gets solar more close to competing with fossil fuels. Solar breakthroughs are really hitting the wire on a regular basis these days.

From the Technology Review link:

In his darkened lab at MIT, Marc Baldo shines an ultraviolet lamp on a 10-­centimeter square of glass. He has coated the surfaces of the glass with dyes that glow faintly orange under the light. Yet the uncoated edges of the glass are shining more brightly–four neat, thin strips of luminescent orange.

The sheet of glass is a new kind of solar concentrator, a device that gathers diffuse light and focuses it onto a relatively small solar cell. Solar cells, multilayered electronic devices made of highly refined silicon, are expensive to manufacture, and the bigger they are, the more they cost. Solar concentrators can lower the overall cost of solar power by making it possible to use much smaller cells. But the concentrators are typically made of curved mirrors or lenses, which are bulky and require costly mechanical systems that help them track the sun.

Unlike the mirrors and lenses in conventional solar concentrators, Baldo’s glass sheets act as waveguides, channeling light in the same way that fiber-optic cables transmit optical signals over long distances. The dyes coating the surfaces of the glass absorb sunlight; different dyes can be used to absorb different wavelengths of light. Then the dyes reëmit the light into the glass, which channels it to the edges. Solar-cell strips attached to the edges absorb the light and generate electricity. The larger the surface of the glass compared with the thickness of the edges, the more the light is concentrated and, to a point, the less the power costs.

Older Posts »