David Kirkpatrick

May 24, 2010

Phoenix Mars Lander, RIP

Like this release hot from the inbox explains, the Phoenix Mars Lander exceeded its planned useful life by a gigantic margin.

The release:

Phoenix Mars Lander Does Not Phone Home, New Image Shows Damage

PASADENA, Calif., May 24 /PRNewswire-USNewswire/ — NASA’s Phoenix Mars Lander has ended operations after repeated attempts to contact the spacecraft were unsuccessful. A new image transmitted by NASA’s Mars Reconnaissance Orbiter (MRO) shows signs of severe ice damage to the lander’s solar panels.

(Logo: http://www.newscom.com/cgi-bin/prnh/20081007/38461LOGO)

“The Phoenix spacecraft succeeded in its investigations and exceeded its planned lifetime,” said Fuk Li, manager of the Mars Exploration Program at NASA’s Jet Propulsion Laboratory in Pasadena, Calif. “Although its work is finished, analysis of information from Phoenix’s science activities will continue for some time to come.”

Last week, NASA’s Mars Odyssey orbiter flew over the Phoenix landing site 61 times during a final attempt to communicate with the lander. No transmission from the lander was detected. Phoenix also did not communicate during 150 flights in three earlier listening campaigns this year.

Earth-based research continues on discoveries Phoenix made during summer conditions at the far-northern site where it landed May 25, 2008. The solar-powered lander completed its three-month mission and kept working until sunlight waned two months later.

Phoenix was not designed to survive the dark, cold, icy winter. However, the slim possibility Phoenix survived could not be eliminated without listening for the lander after abundant sunshine returned.

The MRO image of Phoenix taken this month by the High Resolution Imaging Science Experiment, or HiRISE, camera on board the spacecraft suggests the lander no longer casts shadows the way it did during its working lifetime.

“Before and after images are dramatically different,” said Michael Mellon of the University of Colorado in Boulder, a science team member for both Phoenix and HiRISE. “The lander looks smaller, and only a portion of the difference can be explained by accumulation of dust on the lander, which makes its surfaces less distinguishable from surrounding ground.”

Apparent changes in the shadows cast by the lander are consistent with predictions of how Phoenix could be damaged by harsh winter conditions. It was anticipated that the weight of a carbon-dioxide ice buildup could bend or break the lander’s solar panels. Mellon calculated hundreds of pounds of ice probably coated the lander in mid-winter.

During its mission, Phoenix confirmed and examined patches of the widespread deposits of underground water ice detected by Odyssey and identified a mineral called calcium carbonate that suggested occasional presence of thawed water. The lander also found soil chemistry with significant implications for life and observed falling snow. The mission’s biggest surprise was the discovery of perchlorate, an oxidizing chemical on Earth that is food for some microbes and poisonous to other forms of life.

“We found that the soil above the ice can act like a sponge, with perchlorate scavenging water from the atmosphere and holding on to it,” said Peter Smith, Phoenix principal investigator at the University of Arizona in Tucson. “You can have a thin film layer of water capable of being a habitable environment. A micro-world at the scale of grains of soil — that’s where the action is.”

The perchlorate results are shaping subsequent astrobiology research, as scientists investigate the implications of its antifreeze properties and potential use as an energy source by microbes. Discovery of the ice in the uppermost soil by Odyssey pointed the way for Phoenix. More recently, the MRO detected numerous ice deposits in middle latitudes at greater depth using radar and exposed on the surface by fresh impact craters.

“Ice-rich environments are an even bigger part of the planet than we thought,” Smith said. “Somewhere in that vast region there are going to be places that are more habitable than others.”

NASA’s MRO reached the planet in 2006 to begin a two-year primary science mission. Its data show Mars had diverse wet environments at many locations for differing durations during the planet’s history, and climate-change cycles persist into the present era. The mission has returned more planetary data than all other Mars missions combined.

Odyssey has been orbiting Mars since 2001. The mission also has played important roles by supporting the twin Mars rovers Spirit and Opportunity. The Phoenix mission was led by Smith at the University of Arizona, with project management at JPL and development partnership at Lockheed Martin in Denver. The University of Arizona operates the HiRISE camera, which was built by Ball Aerospace and Technologies Corp., in Boulder. Mars missions are managed by JPL for NASA’s Mars Exploration Program at NASA Headquarters in Washington.

For Phoenix information and images, visit:

http://www.nasa.gov/phoenix

Photo:  http://www.newscom.com/cgi-bin/prnh/20081007/38461LOGO
PRN Photo Desk photodesk@prnewswire.com
Source: NASA

Web Site:  http://www.nasa.gov/

July 17, 2008

More evidence of past water on Mars

I’ve blogged about Phoenix finding evidence of current water on Mars, and here’s a press release on H2O on the ancient Martian surface.

From the second link:

Water-Rich Terrain

This three-dimensional image of a trough in the Nili Fossae region of Mars shows a type of minerals called phyllosilicates (in magenta and blue hues) concentrated on the slopes of mesas and along canyon walls. The abundance of phyllosilicates shows that water played a sizable role in changing the minerals of a variety of terrains in the planet’s early history.

Credit: NASA/JPL/JHUAPL/University of Arizona/Brown University.

New Findings Show Diverse, Wet Environments on Ancient Mars

Mars once hosted vast lakes, flowing rivers and a variety of other wet environments that had the potential to support life, according to two new studies based on data from the Compact Reconnaissance Imaging Spectrometer for Mars(CRISM) and other instruments on board NASA’s Mars Reconnaissance Orbiter (MRO).

“The big surprise from these new results is how pervasive and long-lasting Mars’ water was, and how diverse the wet environments were,” says Scott Murchie, CRISM’s principal investigator at the Johns Hopkins University Applied Physics Laboratory (APL), in Laurel, Md.

One study, published in the July 17 issue of Nature, shows that vast regions of the ancient highlands of Mars—which cover about half the planet—contain clay minerals, which can form only in the presence of water. Volcanic lavas buried the clay-rich regions during subsequent, drier periods of the planet’s history, but impact craters later exposed them at thousands of locations across the planet.

The clay-like minerals, called phyllosilicates, preserve a record of the interaction of water with rocks dating back to what is called the Noachian period of Mars’ history, about 4.6 to 3.8 billion years ago. This period corresponds to the earliest years of the solar system, when Earth, the moon and Mars sustained a cosmic bombardment by comets and asteroids. Rocks of this age have largely been destroyed on Earth by plate tectonics; they are preserved on the moon, but were never exposed to liquid water. The phyllosilicate-containing rocks on Mars therefore preserve a unique record of liquid water environments—possibly suitable for life—in the early solar system.

“The minerals present in Mars’ ancient crust show a variety of wet environments,” says John Mustard, a member of the CRISM team from Brown University in Providence, R.I., and lead author of the Nature study. “In most locations the rocks are lightly altered by liquid water, but in a few locations they have been so altered that a great deal of water must have flushed though the rocks and soil. This is really exciting because we’re finding dozens of sites where future missions can land to understand if Mars was ever habitable and if so, to look for signs of past life.”

A companion study, published in the June 2 issue of Nature Geosciences, finds that the wet conditions persisted for a long time. Thousands to millions of years after the clays were formed, a system of river channels eroded them out of the highlands and concentrated them in a delta where the river emptied into a crater lake slightly larger than California’s Lake Tahoe, about 25 miles (40 kilometers) in diameter. “The distribution of clays inside the ancient lakebed shows that standing water must have persisted for thousands of years,” says Bethany Ehlmann, another member of the CRISM team from Brown and lead author of the study of the ancient lake within Jezero Crater. “Clays are wonderful at trapping and preserving organic matter, so if life ever existed in this region, there’s a chance of its chemistry being preserved in the delta.”

CRISM’s combination of high spatial and spectral resolutions—better than any previous imaging spectrometer sent to Mars—reveals variations in the types and composition of the phyllosilicate minerals. By combining data from CRISM and MRO’s Context Imager (CTX) and High Resolution Imaging Science Experiment (HiRISE), the team has identified three principal classes of water-related minerals dating to the early Noachian period: aluminum-phyllosilicates, hydrated silica or opal, and the more common and widespread iron/magnesium-phyllosilicates. The variations in the minerals suggest that different processes, or different types of watery environments, created them.

“Our whole team is turning our findings into a list of sites where future missions could land to look for organic chemistry and perhaps determine whether life ever existed on Mars,” says APL’s Murchie.

APL, which has built more than 150 spacecraft instruments over the past four decades, led the effort to build CRISM, and operates the instrument in coordination with an international team of researchers from universities, government and the private sector. The Jet Propulsion Laboratory of the California Institute of Technology, Pasadena, manages the Mars Reconnaissance Orbiter mission for NASA’s Science Mission Directorate. Lockheed Martin Space Systems, Denver, is the prime contractor for the project and built the spacecraft.

 

 


The Applied Physics Laboratory, a division of the Johns Hopkins University, meets critical national challenges through the innovative application of science and technology. For more information, visit http://www.jhuapl.edu. For more information on CRISM, visit http://crism.jhuapl.edu.