David Kirkpatrick

June 9, 2010

Lithium-air battery news

Good news, that is. A nanotech catalyst improves the efficiency of lithium-air batteries to record levels and gets them that much closer to practical application in places like electric vehicles.

From the link:

A catalyst developed by researchers at MIT makes rechargeable lithium-air batteries significantly more efficient–a step toward making these high-energy-density batteries practical for use in electric vehicles and elsewhere.

The catalyst consists of nanoparticles of a gold and platinum alloy; in testing it was able to return 77 percent of the energy used to charge the battery as electricity when discharged. That’s up from the previously published record of about 70 percent, the researchers say. The work, which was reported online this week in the Journal of the American Chemical Society, suggests a new approach to lithium-air battery catalysts that could lead to the even higher efficiencies of 85 to 90 percent needed for commercial batteries.

Lithium-air batteries, which generate electricity by reacting lithium metal and oxygen from the air, are attractive for their potential to store vast amounts of energy. They could be a practical way to store more than three times as much energy, by weight, as today’s lithium-ion batteries, extending the range of electric vehicles, for example.

Air catalyst: Gold and platinum alloy nanoparticles (the dark areas) sit on top of a carbon black substrate (the lighter patterns); together, these materials improve the efficiency of lithium-air batteries.
Credit: Yi-Chun Lu

April 3, 2010

Lithium-air batteries

Lithium-air batteries may be the short-term solution to lightweight and relatively efficient battery power. Major implications in terms of electric vehicles and handheld electronics.

From the link:

Yang Shao-Horn, an MIT associate professor of mechanical engineering and materials science and engineering, says that many groups have been pursuing work on lithium-air batteries, a technology that has great potential for achieving great gains in . But there has been a lack of understanding of what kinds of electrode materials could promote the electrochemical reactions that take place in these batteries.

Lithium-oxygen (also known as lithium-air) batteries are similar in principle to the lithium-ion batteries that now dominate the field of  and are a leading contender for . But because lithium-air batteries replace the heavy conventional compounds in such batteries with a carbon-based air electrode and flow of air, the batteries themselves can be much lighter. That’s why leading companies, including IBM and General Motors, have committed to major research initiatives on lithium-air technology.

For further reading here’s the MIT release that spawned this PhysOrg story.