David Kirkpatrick

October 21, 2010

The latest moon facts from NASA

Pretty interesting facts at that …

The release very hot from the inbox:

NASA Missions Uncover the Moon’s Buried Treasures

WASHINGTON, Oct. 21 /PRNewswire-USNewswire/ — Nearly a year after announcing the discovery of water molecules on the moon, scientists Thursday revealed new data uncovered by NASA’s Lunar CRater Observation and Sensing Satellite, or LCROSS, and Lunar Reconnaissance Orbiter, or LRO.

The missions found evidence that the lunar soil within shadowy craters is rich in useful materials, and the moon is chemically active and has a water cycle. Scientists also confirmed the water was in the form of mostly pure ice crystals in some places. The results are featured in six papers published in the Oct. 22 issue of Science.

“NASA has convincingly confirmed the presence of water ice and characterized its patchy distribution in permanently shadowed regions of the moon,” said Michael Wargo, chief lunar scientist at NASA Headquarters in Washington. “This major undertaking is the one of many steps NASA has taken to better understand our solar system, its resources, and its origin, evolution, and future.”

The twin impacts of LCROSS and a companion rocket stage in the moon’s Cabeus crater on Oct. 9, 2009, lifted a plume of material that might not have seen direct sunlight for billions of years. As the plume traveled nearly 10 miles above the rim of Cabeus, instruments aboard LCROSS and LRO made observations of the crater and debris and vapor clouds. After the impacts, grains of mostly pure water ice were lofted into the sunlight in the vacuum of space.

“Seeing mostly pure water ice grains in the plume means water ice was somehow delivered to the moon in the past, or chemical processes have been causing ice to accumulate in large quantities,” said Anthony Colaprete, LCROSS project scientist and principal investigator at NASA’s Ames Research Center in Moffett Field, Calif. “Also, the diversity and abundance of certain materials called volatiles in the plume, suggest a variety of sources, like comets and asteroids, and an active water cycle within the lunar shadows.”

Volatiles are compounds that freeze and are trapped in the cold lunar craters and vaporize when warmed by the sun. The suite of LCROSS and LRO instruments determined as much as 20 percent of the material kicked up by the LCROSS impact was volatiles, including methane, ammonia, hydrogen gas, carbon dioxide and carbon monoxide.

The instruments also discovered relatively large amounts of light metals such as sodium, mercury and possibly even silver.

Scientists believe the water and mix of volatiles that LCROSS and LRO detected could be the remnants of a comet impact. According to scientists, these volatile chemical by-products are also evidence of a cycle through which water ice reacts with lunar soil grains.

LRO’s Diviner instrument gathered data on water concentration and temperature measurements, and LRO’s Lunar Exploration Neutron Detector mapped the distribution of hydrogen. This combined data led the science team to conclude the water is not uniformly distributed within the shadowed cold traps, but rather is in pockets, which may also lie outside the shadowed regions.

The proportion of volatiles to water in the lunar soil indicates a process called “cold grain chemistry” is taking place. Scientists also theorize this process could take as long as hundreds of thousands of years and may occur on other frigid, airless bodies, such as asteroids; the moons of Jupiter and Saturn, including Europa and Enceladus; Mars’ moons; interstellar dust grains floating around other stars and the polar regions of Mercury.

“The observations by the suite of LRO and LCROSS instruments demonstrate the moon has a complex environment that experiences intriguing chemical processes,” said Richard Vondrak, LRO project scientist at NASA’s Goddard Space Flight Center in Greenbelt, Md. “This knowledge can open doors to new areas of research and exploration.”

By understanding the processes and environments that determine where water ice will be, how water was delivered to the moon and its active water cycle, future mission planners might be better able to determine which locations will have easily-accessible water. The existence of mostly pure water ice could mean future human explorers won’t have to retrieve the water out of the soil in order to use it for valuable life support resources. In addition, an abundant presence of hydrogen gas, ammonia and methane could be exploited to produce fuel.

LCROSS launched with LRO aboard an Atlas V rocket from Cape Canaveral, Fla., on June 18, 2009, and used the Centaur upper stage rocket to create the debris plume. The research was funded by NASA’s Exploration Systems Missions Directorate at the agency’s headquarters. LCROSS was managed by Ames and built by Northrop Grumman in Redondo Beach, Calif. LRO was built and is managed by Goddard.

For more information about LCROSS, a complete list of the papers and their authors, visit:

http://www.nasa.gov/lcross

For more information about the LRO mission, visit:

http://www.nasa.gov/lro

SOURCE  NASA

Photo:http://photos.prnewswire.com/prnh/20081007/38461LOGO
http://photoarchive.ap.org/
Photo:http://www.newscom.com/cgi-bin/prnh/20081007/38461LOGO
http://photoarchive.ap.org/
NASA

Web Site: http://www.nasa.gov

November 13, 2009

There’s water on the moon

Filed under: Science — Tags: , , , — David Kirkpatrick @ 2:33 pm

That’s right — H2O –confirmed by NASA’s Lunar Crater Observation and Sensing Satellite.

The release from today’s inbox:

NASA’S LCROSS Impacts Confirm Water In Lunar Crater

MOFFETT FIELD, Calif., Nov. 13 /PRNewswire-USNewswire/ — Preliminary data from NASA’s Lunar Crater Observation and Sensing Satellite, or LCROSS, indicates the mission successfully uncovered water in a permanently shadowed lunar crater. The discovery opens a new chapter in our understanding of the moon.

(Logo: http://www.newscom.com/cgi-bin/prnh/20081007/38461LOGO)

The LCROSS spacecraft and a companion rocket stage made twin impacts in the Cabeus crater Oct. 9 that created a plume of material from the bottom of a crater that has not seen sunlight in billions of years. The plume traveled at a high angle beyond the rim of Cabeus and into sunlight, while an additional curtain of debris was ejected more laterally.

“We’re unlocking the mysteries of our nearest neighbor and, by extension, the solar system,” said Michael Wargo, chief lunar scientist at NASA Headquarters in Washington.

“The moon harbors many secrets, and LCROSS has added a new layer to our understanding.”

Scientists long have speculated about the source of significant quantities of hydrogen that have been observed at the lunar poles. The LCROSS findings are shedding new light on the question with the discovery of water, which could be more widespread and in greater quantity than previously suspected. If the water that was formed or deposited is billions of years old, these polar cold traps could hold a key to the history and evolution of the solar system, much as an ice core sample taken on Earth reveals ancient data. In addition, water and other compounds represent potential resources that could sustain future lunar exploration.

Since the impacts, the LCROSS science team has been analyzing the huge amount of data the spacecraft collected. The team concentrated on data from the satellite’s spectrometers, which provide the most definitive information about the presence of water. A spectrometer helps identify the composition of materials by examining light they emit or absorb.

“We are ecstatic,” said Anthony Colaprete, LCROSS project scientist and principal investigator at NASA’s Ames Research Center in Moffett Field, Calif. “Multiple lines of evidence show water was present in both the high angle vapor plume and the ejecta curtain created by the LCROSS Centaur impact. The concentration and distribution of water and other substances requires further analysis, but it is safe to say Cabeus holds water.”

The team took the known near-infrared spectral signatures of water and other materials and compared them to the impact spectra the LCROSS near infrared spectrometer collected.

“We were able to match the spectra from LCROSS data only when we inserted the spectra for water,” Colaprete said. “No other reasonable combination of other compounds that we tried matched the observations. The possibility of contamination from the Centaur also was ruled out.”

Additional confirmation came from an emission in the ultraviolet spectrum that was attributed to hydroxyl, one product from the break-up of water by sunlight. When atoms and molecules are excited, they release energy at specific wavelengths that can be detected by the spectrometers. A similar process is used in neon signs. When electrified, a specific gas will produce a distinct color. Just after impact, the LCROSS ultraviolet visible spectrometer detected hydroxyl signatures that are consistent with a water vapor cloud in sunlight.

Data from the other LCROSS instruments are being analyzed for additional clues about the state and distribution of the material at the impact site. The LCROSS science team and colleagues are poring over the data to understand the entire impact event, from flash to crater. The goal is to understand the distribution of all materials within the soil at the impact site.

“The full understanding of the LCROSS data may take some time. The data is that rich,” Colaprete said. “Along with the water in Cabeus, there are hints of other intriguing substances. The permanently shadowed regions of the moon are truly cold traps, collecting and preserving material over billions of years.”

LCROSS was launched June 18 from NASA’s Kennedy Space Center in Florida as a companion mission to the Lunar Reconnaissance Orbiter, or LRO. Moving at a speed of more than 1.5 miles per second, the spent upper stage of its launch vehicle hit the lunar surface shortly after 4:31 a.m. PDT Oct. 9, creating an impact that instruments aboard LCROSS observed for approximately four minutes. LCROSS then impacted the surface at approximately 4:36 a.m.

LRO observed the impact and continues to pass over the site to give the LCROSS team additional insight into the mechanics of the impact and its resulting craters. The LCROSS science team is working closely with scientists from LRO and other observatories that viewed the impact to analyze and understand the full scope of the LCROSS data.

For information about LCROSS, visit:

http://www.nasa.gov/lcross

Photo:  http://www.newscom.com/cgi-bin/prnh/20081007/38461LOGO
AP Archive:  http://photoarchive.ap.org/
PRN Photo Desk photodesk@prnewswire.com
Source: NASA

Web Site:  http://www.nasa.gov/