David Kirkpatrick

February 4, 2011

One more thing to do this Sunday — check out the sun

Hot from the inbox:

NASA Releasing First Views of the Entire Sun on Super SUN-Day

WASHINGTON, Feb. 4, 2011 /PRNewswire-USNewswire/ — NASA will score big on super SUN-day at 11 a.m. EST, Sunday, Feb. 6, with the release online of the first complete view of the sun’s entire surface and atmosphere.

(Logo: http://photos.prnewswire.com/prnh/20081007/38461LOGO)

Seeing the whole sun front and back simultaneously will enable significant advances in space weather forecasting for Earth, and improve planning for future robotic or crewed spacecraft missions throughout the solar system.

These views are the result of observations by NASA’s two Solar TErrestrial Relations Observatory (STEREO) spacecraft. The duo are on diametrically opposite sides of the sun, 180 degrees apart. One is ahead of Earth in its orbit, the other trailing behind.

Launched in October 2006, STEREO traces the flow of energy and matter from the sun to Earth. It also provides unique and revolutionary views of the sun-Earth system. The mission observed the sun in 3-D for the first time in 2007. In 2009, the twin spacecraft revealed the 3-D structure of coronal mass ejections which are violent eruptions of matter from the sun that can disrupt communications, navigation, satellites and power grids on Earth.

STEREO is the third mission in NASA’s Solar Terrestrial Probes program within the agency’s Science Mission Directorate in Washington. NASA’s Goddard Space Flight Center in Greenbelt, Md., manages the mission, instruments and science center.

The Johns Hopkins University Applied Physics Laboratory in Laurel, Md., designed and built the spacecraft and is responsible for mission operations.

The STEREO imaging and particle detecting instruments were designed and built by scientific institutions in the U.S., UK, France, Germany, Belgium, Netherlands and Switzerland.

To view the image with supporting visuals and information, visit:

http://www.nasa.gov/stereo

For information about NASA and other agency programs, visit:

http://www.nasa.gov

SOURCE  NASA

Photo:http://photos.prnewswire.com/prnh/20081007/38461LOGO
http://photoarchive.ap.org/
NASA

Web Site: http://www.nasa.gov

Advertisements

July 17, 2008

More evidence of past water on Mars

I’ve blogged about Phoenix finding evidence of current water on Mars, and here’s a press release on H2O on the ancient Martian surface.

From the second link:

Water-Rich Terrain

This three-dimensional image of a trough in the Nili Fossae region of Mars shows a type of minerals called phyllosilicates (in magenta and blue hues) concentrated on the slopes of mesas and along canyon walls. The abundance of phyllosilicates shows that water played a sizable role in changing the minerals of a variety of terrains in the planet’s early history.

Credit: NASA/JPL/JHUAPL/University of Arizona/Brown University.

New Findings Show Diverse, Wet Environments on Ancient Mars

Mars once hosted vast lakes, flowing rivers and a variety of other wet environments that had the potential to support life, according to two new studies based on data from the Compact Reconnaissance Imaging Spectrometer for Mars(CRISM) and other instruments on board NASA’s Mars Reconnaissance Orbiter (MRO).

“The big surprise from these new results is how pervasive and long-lasting Mars’ water was, and how diverse the wet environments were,” says Scott Murchie, CRISM’s principal investigator at the Johns Hopkins University Applied Physics Laboratory (APL), in Laurel, Md.

One study, published in the July 17 issue of Nature, shows that vast regions of the ancient highlands of Mars—which cover about half the planet—contain clay minerals, which can form only in the presence of water. Volcanic lavas buried the clay-rich regions during subsequent, drier periods of the planet’s history, but impact craters later exposed them at thousands of locations across the planet.

The clay-like minerals, called phyllosilicates, preserve a record of the interaction of water with rocks dating back to what is called the Noachian period of Mars’ history, about 4.6 to 3.8 billion years ago. This period corresponds to the earliest years of the solar system, when Earth, the moon and Mars sustained a cosmic bombardment by comets and asteroids. Rocks of this age have largely been destroyed on Earth by plate tectonics; they are preserved on the moon, but were never exposed to liquid water. The phyllosilicate-containing rocks on Mars therefore preserve a unique record of liquid water environments—possibly suitable for life—in the early solar system.

“The minerals present in Mars’ ancient crust show a variety of wet environments,” says John Mustard, a member of the CRISM team from Brown University in Providence, R.I., and lead author of the Nature study. “In most locations the rocks are lightly altered by liquid water, but in a few locations they have been so altered that a great deal of water must have flushed though the rocks and soil. This is really exciting because we’re finding dozens of sites where future missions can land to understand if Mars was ever habitable and if so, to look for signs of past life.”

A companion study, published in the June 2 issue of Nature Geosciences, finds that the wet conditions persisted for a long time. Thousands to millions of years after the clays were formed, a system of river channels eroded them out of the highlands and concentrated them in a delta where the river emptied into a crater lake slightly larger than California’s Lake Tahoe, about 25 miles (40 kilometers) in diameter. “The distribution of clays inside the ancient lakebed shows that standing water must have persisted for thousands of years,” says Bethany Ehlmann, another member of the CRISM team from Brown and lead author of the study of the ancient lake within Jezero Crater. “Clays are wonderful at trapping and preserving organic matter, so if life ever existed in this region, there’s a chance of its chemistry being preserved in the delta.”

CRISM’s combination of high spatial and spectral resolutions—better than any previous imaging spectrometer sent to Mars—reveals variations in the types and composition of the phyllosilicate minerals. By combining data from CRISM and MRO’s Context Imager (CTX) and High Resolution Imaging Science Experiment (HiRISE), the team has identified three principal classes of water-related minerals dating to the early Noachian period: aluminum-phyllosilicates, hydrated silica or opal, and the more common and widespread iron/magnesium-phyllosilicates. The variations in the minerals suggest that different processes, or different types of watery environments, created them.

“Our whole team is turning our findings into a list of sites where future missions could land to look for organic chemistry and perhaps determine whether life ever existed on Mars,” says APL’s Murchie.

APL, which has built more than 150 spacecraft instruments over the past four decades, led the effort to build CRISM, and operates the instrument in coordination with an international team of researchers from universities, government and the private sector. The Jet Propulsion Laboratory of the California Institute of Technology, Pasadena, manages the Mars Reconnaissance Orbiter mission for NASA’s Science Mission Directorate. Lockheed Martin Space Systems, Denver, is the prime contractor for the project and built the spacecraft.

 

 


The Applied Physics Laboratory, a division of the Johns Hopkins University, meets critical national challenges through the innovative application of science and technology. For more information, visit http://www.jhuapl.edu. For more information on CRISM, visit http://crism.jhuapl.edu.