David Kirkpatrick

August 4, 2010

Fiber optics on a chip

Filed under: Business, Science, Technology — Tags: , , , , , — David Kirkpatrick @ 4:22 pm

Now, this is really interesting (and to be fair to the story, the fiber ops are replacing wiring, the chip is key component in allowing this to happen.)

From the link:

The world of computing could change rapidly in coming years thanks to technology that replaces the metal wiring between components with faster, more efficient fiber-optic links.

“All communications over long distance are driven by lasers, but you’ve never had it inside devices,” says Mario Paniccia, director of Intel’s photonics lab in Santa Clara, CA. “Our new integrated optical link makes that possible.”

Paniccia’s team has perfected tiny silicon chips capable of encoding and decoding laser signals sent via fiber optics. Today, when data arrives at a computer via a fiber optic connection it has to be moved from a separate photonic device to an electronic circuit. This new system promises to speed things up because everything works in silicon.

Last week, Paniccia’s team demonstrated the first complete photonic communications system made from components fully integrated into silicon chips. Electronic data piped into one chip is converted into laser light that travels down an optical fiber and is transferred back into electrical signals a few fractions of a second later. The system can carry data at a rate of 50 gigabytes per second, enough to transfer a full-length HD movie in less than a second.

The silicon photonic chips could replace the electronic connections between a computer’s key components, such as its processors and memory. Copper wiring used today can carry data signals at little more than 10 gigabytes per second. That means critical components like the central processing unit and the memory in a server cannot be too far apart, which restricts how computers can be built.

Seeing the light: A chip in the center of this circuit board contains four lasers that convert electrical signals into light pulses. The pulses travel at high speeds along a fiber-optic link.
Credit: Intel

October 30, 2009

Improving dye-sensitized solar cells

Efficiencies are going up and costs and holding steady or falling. All this bodes well for the future of solar power.

From the link:

Dye-sensitized solar cells are flexible and cheap to make, but they tend to be inefficient at converting light into electricity. One way to boost the performance of any solar cell is to increase the surface area available to incoming light. So a group of researchers at Georgia Tech has made dye-sensitized solar cells with a much higher effective surface area by wrapping the cells around optical fibers. These fiber solar cells are six times more efficient than a zinc oxide solar cell with the same surface area, and if they can be built using cheap polymer fibers, they shouldn’t be significantly more expensive to make.

The advantage of a fiber-optic solar-cell system over a planar one is that light bounces around inside an optical fiber as it travels along its length, providing more opportunities to interact with the solar cell on its inner surface and producing more current. “For a given real estate, the total area of the cell is higher, and increased surface area means improved light harvesting and more energy,” says Max Shtein, an assistant professor of materials science and engineering at the University of Michigan who was not involved with the research.

Solar on fiber: An optical fiber (left) is covered in dye-coated zinc-oxide nanowires (closeup, right). Both images were made using a scanning electron microscope.
Credit: Angewandte Chemie

February 22, 2008

Nanotechnology fiber optic boost

Filed under: Science, Technology — Tags: , , , — David Kirkpatrick @ 12:01 am

Cool news from the KurzweilAI.net newsletter. Nanotech that amplifies and sharpens fiber-op lines.

Replacing bulk with nanotechnology, researchers find new way to keep fiber-optic signal sharp
Nanowerk News, Feb. 20, 2008

Cornell researchers have demonstrated that a single photonic microchip–using four-wave mixing to amplify an optical signal by “pumping” with another beam of light–can replace the bulky bundles of fiber or electronic amplifiers now needed to clean up and sharpen fiber optic signals distorted by distance.

See also Researchers create a broadband light amplifier on a chip
Read Original Article>>