David Kirkpatrick

February 12, 2009

February 2009 media tips from Oak Ridge National Laboratory

The release:

February 2009 Story Tips

(Story Tips Archive)

Story ideas from the Department of Energy’s Oak Ridge National Laboratory. To arrange for an interview with a researcher, please contact the Communications and External Relations staff member identified at the end of each tip.

MICROSCOPY—-STEM in liquid . . . . . .

Researchers at ORNL and Vanderbilt University have unveiled a new technique for imaging whole cells in liquid using a scanning transmission electron microscope. Electron microscopy is the most important tool for imaging objects at the nano-scale–the size of molecules and objects in cells. But electron microscopy requires a high vacuum, which has prevented imaging of samples in liquid, such as biological cells.” The new technique – liquid STEM – uses a micro-fluidic device with electron transparent windows to enable the imaging of cells in liquid. A team led by Niels de Jonge imaged individual molecules in a cell, with significantly improved resolution and speed compared with existing imaging methods. “Liquid STEM has the potential to become a versatile tool for imaging cellular processes on the nanometer scale,” said de Jonge. “It will potentially be of great relevance for the development of molecular probes and for the understanding of the interaction of viruses with cells.” The work was recently described in the on-line Proceedings of the National Academy of Sciences.

BIOLOGY—-Time-saving tool . . . . . .

Scientists studying human health, agriculture and the environment have a powerful new tool to help them better understand microbial processes and how they relate to ecosystems. The GeoChip consolidates into one analysis something that using traditional methods would require dozens of tests and take possibly years to complete, according to co-developer Chris Schadt of ORNL’s Biosciences Division. This lab on a chip features more than 24,000 gene probes that target more than 150 functional gene groups involved in biochemical, ecological and environmental processes. The GeoChip is especially useful for bioremediation of sediments and soils, determining the role of microbes in soil and learning how microbial processes are connected to ecosystem responses to human-induced environmental changes such as temperature, moisture and carbon dioxide. This research was funded by the Department of Energy’s Office of Biological and Environmental Research.


CYBERSPACE—-Thwarting threats . . . . . .

Colonies of cyber robots with unique missions can in near real time detect network intruders on computers that support U.S. infrastructure. These “cybots” created for an ORNL software program called UNTAME (Ubiquitous Network Transient Autonomous Mission Entities) may be especially useful for helping government agencies deter, defend, protect against and defeat cyber-attacks. “What scares us the most isn’t what we can see, but rather what we can’t see,” said Joe Trien of the lab’s Computational Sciences & Engineering Division. “A coordinated cyber attack could disrupt one or more of U.S. critical infrastructures, and these attacks can reach across the world at the speed of light.” Trien led a team of researchers that developed UNTAME.


COMPUTING—-First petascale projects . . . . . .

The National Center for Computational Sciences at Oak Ridge National Laboratory has granted early access to a number of projects to test Jaguar, which has peak performance of 1.6 petaflops and is the most powerful computer in the world for open science. The “Petascale Early Science” period will run approximately 6 months and consist initially of 20 projects, said NCCS Director of Science Doug Kothe. The early phase period seeks to deliver high-impact science results and advancements; harden the system for production; and embrace a broad user community to use the system, Kothe said. Proposals include: modeling to better understand climate change; energy storage and battery technology; cellulose conversion to ethanol; combustion research for more efficient automobile engines; and high-temperature superconductors for more efficient transmission of electricity. Fusion, nuclear energy, materials science, nuclear physics, astrophysics, and carbon sequestration also will be explored. “These early simulations on Jaguar will also help us harden the system for a broader collection of projects later in the year,” said Kothe.