David Kirkpatrick

September 7, 2010

From the department of, “no duh” …

… I’ll let this bit from KurzweilAI.net speak for itself:

Magic mushrooms reduce anxiety over cancer

September 7, 2010

Source: New Scientist Health, Sep 6, 2010

The active ingredient of magic mushrooms,  psilocybin, has been shown to reduce anxiety and improve mood in people with cancer. researchers from Harbor-UCLA Medical Center have found.

Volunteers reported feeling less depressed and anxious two weeks after receiving psilocybin. Six months later, the level of depression was significantly lower in all volunteers than it had been before the treatments began.

(Dohduhdah/Wikipedia Commons)

Read original article

Advertisements

May 27, 2010

More nanotech medical treatment

Filed under: Science, Technology — Tags: , , , , , — David Kirkpatrick @ 4:23 pm

Both via KurzweilAI.net, and both as a follow-up to my previous post on killing tumors with gold nanoparticles.

First up is using carbon nanotubes as a radiotherapy delivery system:

Nanocapsule delivers radiotherapy
PhysOrg.com, May 26, 2010

Oxford University chemists have encapsulated radionuclides within carbon nanotubes and set new records for highly concentrated in vivo radiodosage, while demonstrating zero leakage of isotopes to high-affinity organs, such as the thyroid.


Artist’s rendition of nanocapsules (Gerard Tobias)
Read Original Article>>

And second is using nanoporous particles as a molecular therapy deliver system to tumors:

Nanoporous Particles Deliver Novel Molecular Therapies to Tumors
PhysOrg.com, May 26, 2010

Using nanoporous silicon particles, two teams of investigators have created drug delivery vehicles capable of ferrying labile molecular therapies deep into the body, creating new opportunities for developing innovative anticancer therapies.
Read Original Article>>

Killing tumors with gold nanoparticles

Via KurzweilAI.net — The latest in fighting cancer with nanotechnology.

Self-Assembling Gold Nanoparticles Use Light to Kill Tumor Cells
PhysOrg.com, May 26, 2010

Researchers at the University of California, Los Angeles, have developed a method for creating supramolecular assemblies of gold nanoparticles that function as highly efficient photothermal agents for delivery to tumors, using a laser beam to heat the nanoparticles above 374 degreesC, the temperature at which explosive microbubbles form.
Read Original Article>>

May 1, 2010

US government puts $145M into anti-cancer nanotech research

I’ve done a ton of blogging on cancer fighting nanotechnology, so I’m particularly pleased to read about this government initiative. Nanotech may well be the “magic bullet” researchers have been searching for in the battle against cancer.

From the second link, the release:

New advances in science of the ultra-small promise big benefits for cancer patients

IMAGE: Gold nanoparticles, the bright structures attached to the cultured human cell in this electron microscope image, are among the ultra-small technologies that may help improve the diagnosis and treatment of…

Click here for more information.

A $145-million Federal Government effort to harness the power of nanotechnology to improve the diagnosis, treatment, and prevention of cancer is producing innovations that will radically improve care for the disease. That’s the conclusion of an update on the status of the program, called the National Cancer Institute Alliance for Nanotechnology in Cancer. It appears in ACS Nano, a monthly journal published by the American Chemical Society.

Piotr Grodzinski and colleagues note in the article that the alliance, launched in 2004, funds and coordinates research specifically intended to move knowledge about the small science out of laboratories and into hospitals and doctors offices in a big way. It builds on more than 50 years of advances in cancer care that although substantial, still leave cancer as the No. 1 cause of death in the United States and globally.

The article describes a range of advances, including some showing significant promise in clinical trials that are poised to make a big impact on cancer. They promise earlier disease diagnosis, highly targeted treatments that kill cancer cells but leave normal cells alone, fewer side effects, and improved survival, the article

###

ARTICLE FOR IMMEDIATE RELEASE “Recent Advances from the National Cancer Institute Alliance for Nanotechnology in Cancer”

DOWNLOAD FULL TEXT ARTICLE http://pubs.acs.org/stoken/presspac/presspac/full/10.1021/nn100073g

April 21, 2010

More cancer-fighting nanotech

Filed under: Science, Technology — Tags: , , , , , , — David Kirkpatrick @ 1:26 am

Research has found carbon nanotubes can help the body’s immune system fight cancer. Hit this link for all my cancer-related nanotechnology blogging.

From the first link:

Carbon nanotubes boost cancer-fighting cells

New Haven, Conn.—Yale University engineers have found that the defects in carbon nanotubes cause T cell antigens to cluster in the blood and stimulate the body’s natural immune response. Their findings, which appear as the cover article of the April 20 issue of the journal Langmuir, could improve current adoptive immunotherapy, a treatment used to boost the body’s ability to fight cancer.

Adoptive immunotherapy involves extracting a patient’s blood so that the number of naturally occurring T cells (a type of white blood cell) can reproduce more effectively in the laboratory. Although the body produces its own tumor-fighting T cells, they are often suppressed by the tumor and are too few to be effective. Scientists boost the production of T cells outside the body using different substances that encourage T cell antigens to cluster in high concentrations. The better these substances are at clustering T cell antigens, the greater the immune cell proliferation. Once enough T cells are produced, the blood is transferred back into the patient’s body.

The Yale team had previously reported the unexpected effect that carbon nanotubes had on T cell production. They found that the antigens, when presented on the surface of the nanotubes, stimulated T cell response far more effectively than coating other substrates such as polystyrene in the antigens, even though the total amount of antigens used remained the same.

Now they have discovered the reason behind the increased stimulation. They found that the antigens cluster in high concentrations around the tiny defects found in the carbon nanotubes.

“Carbon nanotube bundles resemble a lymph node microenvironment, which has a labyrinth sort of geometry,” said Tarek Fahmy, associate professor of chemical engineering and biomedical engineering at Yale and senior author of the paper. “The nanotube bundles seem to mimic the physiology and adsorb more antigens, promoting a greater immunological response.”

Current adoptive immunotherapy takes weeks to produce enough T cells, but lab tests showed that the nanotubes produced the same T cell concentration in just one-third the time, Fahmy said.

Carbon nanotubes can cause problems, such as an embolism, when used in the body. But this isn’t the case when they are used in blood that has been extracted from the patient, Fahmy said. Next, the team will work on a way to effectively remove the carbon nanotubes from the blood before it is returned to the patient.

“We think this is a really interesting use of carbon nanotubes. It’s a way to exploit the unique properties of this material for biological application in a safe way.”

###

Other authors of the paper include lead author Tarek Fadel, Michael Look, Peter Staffier, Gary Haller and Lisa Pfefferle, all of the Yale School of Engineering & Applied Science.

March 19, 2010

More news on laser-heated nanoparticles and cancer

Filed under: Science — Tags: , , , , , , , — David Kirkpatrick @ 12:53 am

There’s been a lot of blog-worthy news on cancer research and nanotech lately, particularly on heating nanoparticles with low-intensity lasers to zap cancer cells. I first blogged on this tech a couple of years ago, but lately a number of institutions have released different research results on the process so I’m guessing it is really getting somewhere. This amount of news release activity makes me wonder if this is getting close to actually treating people. This latest release — the third this month — is from the University of Florida. This particular laser-excited nanoparticle tech does go beyond medical usage

The release:

Engineers: Weak laser can ignite nanoparticles, with exciting possibilities

GAINESVILLE, Fla. — University of Florida engineering researchers have found they can ignite certain nanoparticles using a low-power laser, a development they say opens the door to a wave of new technologies in health care, computing and automotive design.

A paper about the research appears in this week’s advance online edition of Nature Nanotechnology.

Vijay Krishna, Nathanael Stevens, Ben Koopman and Brij Moudgil say they used lasers not much more intense than those found in laser pointers to light up, heat or ignite manufactured carbon molecules, known as fullerenes, whose soccer-ball-like shapes had been distorted in certain ways. They said the discovery suggests a score of important new applications for these so-called “functionalized fullerenes” molecules already being developed for a broad range of industries and commercial and medical products.

“The beauty of this is that it only requires a very low intensity laser,” said Moudgil, professor of materials science and engineering and director of the engineering college’s Particle Engineering Research Center, where the research was conducted.

The researchers used lasers with power in the range of 500 milliwatts. Though weak by laser standards, the researchers believe the lasers have enough energy to initiate the uncoiling or unraveling of the modified or functionalized fullerenes. That process, they believe, rapidly releases the energy stored when the molecules are formed into their unusual shapes, causing light, heat or burning under different conditions.

The Nature Nanotechnology paper says the researchers tested the technique in three possible applications.

In the first, they infused cancer cells in a laboratory with a variety of functionalized fullerenes known to be biologically safe called polyhydroxy fullerenes. They then used the laser to heat the fullerenes, destroying the cancer cells from within.

“It caused stress in the cells, and then after 10 seconds we just see the cells pop,” said Krishna, a postdoctoral associate in the Particle Engineering Research Center.

He said the finding suggests doctors could dose patients with the polyhdroxy fullerenes, identify the location of cancers, then treat them using low-power lasers, leaving other tissues unharmed. Another application would be to image the locations of tumors or other areas of interest in the body using the fullerenes’ capability to light up.

The paper also reports the researchers used fullerenes to ignite a small explosive charge. The weak laser contained far less energy than standard electrical explosive initiators, the researchers said, yet still ignited a type of functionalized fullerenes called carboxy fullerenes. That event in turn ignited comparatively powerful explosives used in traditional blasting caps.

Mining, tunneling or demolition crews currently run electrical lines to explosives, a time-consuming and expensive process for distant explosives. The experiment suggests crews could use blasting caps armed with the fullerenes and simply point a laser to set them off.

“Traditional bursting caps require a lot of energy to ignite — they use a hot tungsten filament,” said Nathanael Stevens, a postdoctoral associate in the Particle Engineering Research Center. “So, it is interesting that we can do it with just a low-powered laser.”

The researchers coated paper with polyhyroxy fullerenes, then used an ultrahigh resolution laser to write a miniature version of the letters “UF.” The demonstration suggests the technique could be used for many applications that require extremely minute, precise, lithography. Moudgil said the researchers had developed one promising application involving creating the intricate patterns on computer chips.

Although not discussed in the paper, other potential applications include infusing the fullerenes in gasoline, then igniting them with lasers rather than traditional sparkplugs in car engines, Moudgil said. Because the process is likely to burn more of the gasoline entering the cylinders, it could make cars more efficient and less polluting.

The researchers have identified more than a dozen potential applications and applied for several patents. This week’s Nature Nanotechnology paper is the first scientific publication on the discovery and the new technique.

-30-

March 13, 2010

Cancer and nanotechnology

Filed under: Science, Technology — Tags: , , , , — David Kirkpatrick @ 4:43 pm

I’ve been using HubPages as an outlet for print work that I retain the rights to after selling FNASR to a publication that doesn’t archive its content online. Last week I decided to create a hub offering a clearinghouse of all my blogging on cancer and nanotechnology to date in an effort to get a lot of basic information in one place for people interested in the topic. HubPages doesn’t allow more than three links back to one source and blocked that hub after a couple of days. Sadly they’ve not returned a request to waive the rule in this case because the hub’s purpose was purely informational, not link building for my blog. So here is the hub’s contents to get it back out there, and I’ve been forced to amend the original hub with nothing more than a link back to this post. Sorry for the confusion, but do enjoy the material. And a large raspberry to HubPages for zero communication on a hub that probably deserved an exception to an otherwise sensible rule.

The original hub:

At my personal blog I cover a wide range of topics, but four areas get a lot of attention — business (particularly small business), politics, the energy sector (particularly solar energy) and nanotechnology. One place nanotech is really shining in terms of regular breakthroughs and practical applications is in cancer research and treatment. Following is a recap of two years of nanotech/cancer blogging with dates of, links to the original posts and a summary of the key information. If you are interested in the intersection of nanotechnology and cancer research, this hub is a great place to get started.

April 2, 2008 — Researchers at UCLA developed a “nanoimpeller” nanomachine that stores cancer fighting drugs for release inside cancer cells in response to light.

April 3, 2008 — Researchers at Washington University School of Medicine used drug-coated nanoparticles to deliver fumigillin to cancerous tumors at a 1000-times reduced dose while remaining effective. Fumigillin has neurotoxic side effects at standard dosage.

May 8, 2008 — Researcher at UC San Diego, UC Santa Barbara and MIT developed “nanoworms” that can travel through the bloodstream and target tumors — even tumors too small for conventional detection.

July 17, 2008 — Researchers at Georgia Tech developed a treatment that attaches magnetic nanoparticles to free-floating cancer cells allowing those cells to be removed from the body.

July 28, 2008 — More on the Georgia Tech treatment with image.

September 8, 2008 — Nanoscale gold rods are a key component in heat-based cancer treatment. The gold nanoparticles are designed to bind only with cancer cells.

September 29, 2008 — A hybrid technology from researchers headed by the National Cancer Institute’s Alliance for Nanotechnology in Cancer combining a magnetic nanoparticle, a fluorescent quantum dot and an anticancer drug helps to both image and treat cancerous tumors.

February 2, 2009 — Researchers at the University of Texas M.D. Anderson Cancer Center find hollow gold nanospheres containing a targeting peptide track down melanoma cells and penetrate them allowing for treatment with near-infrared light.

November 29. 2009 — A Nature Materials report finds “nanodiscs” made of a nickel-iron alloy can be subjected to a magnetic field to disrupt the membranes of cancer cells and destroy them. Tests found ten minutes of a low magnetic field killed 90% of cancer cells.

January 14, 2010 — Researchers at the National Cancer Institute’s Centers of Cancer Nanotechnology Excellence found two nanoparticles that work in concert to find, bind with and destroy cancer cells. One particle locates and adheres to the tumor and sensitizes the cancer cells for the second nanoparticle that kills the tumor.

February 11, 2010 — This link goes a press release on gold and nanotech. The release mentions gold nanoparticles efficacy in cancer detection and treatment.

February 17, 2010 — Researchers at the University of Missouri created a sensor based on N/MEMS (micro/nanoelectromechanical systems) known as an acoustic resonant sensor that can test for diseases including breast and prostate cancer. The device could lead to a home cancer detection kit.

March 8, 2010 — Researchers at Cornell found nanoparticles made of a dumbbell-shaped two iron oxide particles sandwiching a gold particle can be loaded with an antibody to specifically target cancer cells then become heated by a near infrared laser killing the cells. This treatment is capable of killing cancer cells while leaving nearby healthy cells unharmed.

Keep in mind this hub only covers nanotech/cancer news that caught my eye over the last couple of years. There are breakthroughs happening every day at labs and universities around the world. The field is still in something of its infancy, but nanotechnology in many forms looks like it might be at least one magic bullet in the fight against cancer.

Update: hit this link for all my blog posts on cancer and nanotech.

March 11, 2010

Cancer and nanotechnology

Filed under: Media, Science, Technology — Tags: , , , , , , — David Kirkpatrick @ 2:19 am

I’ve done a lot of blogging over the last two years on the convergence of cancer research/treatment and nanotechnology. Here’s a HubPages hub that serves as a clearinghouse of those posts to date.

Hit this link if you’d prefer to plow though all the posts here on this blog.

Update 3/13/10 — HubPages doesn’t allow multiple links back to one source, so it pulled my original hub and did not respond to a request to waive the otherwise sensible rule in this case as the hub was not a link-building page for this blog, but simply a method to get a lot of information covering a long time period in one place. Hit this link to find the text of the original hub in its entirety.

January 14, 2010

Using nanotech to attack cancer

Filed under: Science, Technology — Tags: , , , , — David Kirkpatrick @ 3:44 pm

Via KurzweilAI.net — Nanotechnology continues to be a major player in treating cancer.

Nanoparticle Cocktail Targets and Kills Tumors
PhysOrg.com, Jan. 13, 2010

Researchers at the National Cancer Institute’s Centers of Cancer Nanotechnology Excellence have developed a “cocktail” of two different nanometer-sized particles that work in concert within the bloodstream to locate, adhere to and kill cancerous tumors.

One nanomaterial was designed to find and adhere to tumors in mice and then sensitize tumor cells for the second nanoparticle, which kills the tumors.

Read Original Article>>

November 29, 2009

Nanomagnet cancer treatment

Nanoscale magnetic discs actually physically wreck cancer cells. Nanotech is offering a lot of medical treatments, particularly in cancer research.

From the link:

Laboratory tests found the so-called “nanodiscs”, around 60 billionths of a metre thick, could be used to disrupt the membranes of , causing them to self-destruct.

The discs are made from an iron-nickel alloy, which move when subjected to a magnetic field, damaging the cancer cells, the report published in Nature Materials said.

One of the study’s authors, Elena Rozhlova of Argonne National Laboratory in the United States, said subjecting the discs to a low magnetic field for around ten minutes was enough to destroy 90 percent of cancer cells in tests.

February 2, 2009

Nanotech fighting cancer

From KurzweilAI.net— It seems like nanotech might be the magic bullet for cancer. This technique uses gold nanospheres to fight melanoma.

Targeted nanospheres find, penetrate, then fuel burning of melanoma
PhysOrg.com, Feb. 2, 2009

Hollow gold nanospheres equipped with a targeting peptide find melanoma cells, penetrate them deeply, and then cook the tumor when bathed with near-infrared light, University of Texas M. D. Anderson Cancer Center researchers have shown.

 
Read Original Article>>

September 29, 2008

Nanotech is really looking like the cancer “golden gun”

From KurzweilAI.net — Hybrid nanotechnology is leading the fight against cancer. This breakthrough comes from the National Cancer Institute’s Alliance for Nanotechnology in Cancer.

Hybrid Nanoparticles Image and Treat Tumors
PhysOrg.com, Sep. 26, 2008

Combining a magnetic nanoparticle, a fluorescent quantum dot, and an anticancer drug within a lipid-based nanoparticle, a multi-institutional research team headed by the National CancerInstitute’s (NCI) Alliance for Nanotechnology in Cancer has created a single agent that can image and treat tumors, while avoiding detection by the immune system, enabling the particle to remain in the body for extended periods of time.

 
Read Original Article>>

July 28, 2008

Nanomagnets fighting cancer

From KurzweilAI.net — Nanoparticle-sized magnets specially coated to “catch” ovarian cancer cells are a new cancer-fighting treatment.

 

Magnets Capture Cancer Cells
Technology Review, July 22, 2008

Georgia Institute of Technology researchers have developed magnetic nanoparticles (coated with a specialized targeting peptide molecule) designed to latch onto ovarian cancer cells in mice and drag them out of the abdominal fluid to prevent metastasis.


Nanoparticles (red) on cancer cell

See Also New Nano Weapon against Cancer

 
Read Original Article>>

July 17, 2008

Nanotech fighting cancer

Filed under: Science, Technology — Tags: , , , , — David Kirkpatrick @ 1:58 am

This is a pretty exciting breakthrough in fighting cancer through nanotechnology.

Hit the link for a video, and here’s the lede:

Scientists at Georgia Tech have developed a potential new treatment against cancer that attaches magnetic nanoparticles to cancer cells, allowing them to be captured and carried out of the body. The treatment, which has been tested in the laboratory and will now be looked at in survival studies, is detailed online in the Journal of the American Chemical Society.

“We’ve been able to use magnetic nanoparticles to capture free-floating cancer cells and then take them out of the body,” said John McDonald, chair of the School of Biology at Georgia Tech and chief research scientist at the Ovarian Cancer Institute. “This technology may be of special importance in the treatment of ovarian cancer where the malignancy is typically spread by free-floating cancer cells released from the primary tumor into the abdominal cavity.”

April 3, 2008

Nanoparticles fight cancer with targeted doses

Another nanotech advance in cancer treatment.

From KurzweilAI.net:

Nanoparticle delivery sytem for anti-tumor toxins reduces drug dose 1,000 times
KurzweilAI.net, April 3, 2008Washington University School of Medicine researchers using drug-coated nanoparticles to deliver fumagillin (a fungal toxin cancer treatment) to tumors found that a drug dose 1,000 times lower than used previously still significantly slowed tumor growth.

Fumagillin can have neurotoxic side effects at the high doses required with standard methods. The fumagillin nanoparticles were effective in very low doses because they were designed to concentrate where tumors create new blood vessels.

Washington University School of Medicine News Release

April 2, 2008

Nanotech news in computing, display and medicine

The latest in nanotechnology developments from KurzweilAI.net.

First up is a variant of multidimensional hypercubes to be used as part of nanocomputers.

Next is an active-matrix display created with nanowires. This tech should eventually lead to e-paper, flexible monitors and other cool display applications.

Last is a nanomachine that kills cancer cells. UCLA researchers created a “nanoimpeller” that delivers anti-cancer drugs right to the cancer cell.

Hypercubes Could Be Building Blocks of Nanocomputers
PhysOrg.com, April 1, 2008University of Oklahoma researchers have investigated a new variant of multidimensional hypercubes as computational elements of nanocomputers: the “M-hypercube,” which could provide a higher-dimensional layout to support three-dimensional integrated circuits and the quantum properties of nanocomputers.The unique structure of hypercubes provides a massively parallel, distributed processing architecture with simple, robust communication linkages, able to count single electrons, and allow for parallel computing, reversibility, locality, and a three-dimensional architecture.

M-hypercubes contain two types of nodes: state nodes, which are embedded on the vertices of the M-hypercubes; and transmission nodes, which are embedded in the middle of the links between state nodes. Each node can be turned on or off; the transmission nodes can isolate parts of the cube from other parts when in the off state.

Read Original Article>>

Engineers make first ‘active matrix’ display using nanowires
PhysOrg.com, March 31, 2008Purdue University researchers have created the first active-matrix display using a new class of transparent nanowire transistors and circuits.Future applications include e-paper, flexible color monitors, and heads-up displays embedded in car windshields.
Read Original Article>>
Nanomachine kills cancer cells
PhysOrg.com, April 1, 2008UCLA researchers have developed a “nanoimpeller” nanomachine that stores anticancer drugs inside pores and then releases them into cancer cells in response to light.They claim it’s the first light-powered nanomachine that operates inside a living cell.

The interior of the pores are coated with azobenzene, a chemical that oscillates between two different shapes upon light exposure. The amount of drug released can be precisely controlled by the light‘s intensity, excitation time and specific wavelength.
Read Original Article>>

March 5, 2008

Lots of cool science and tech …

… from today’s KurzweilAI.net newsletter. The first two are bits about solar energy — the first on even “greener” solar panels, and the second on inkjet printing organic solar cells.

The third story is on cancer and embryonic stem cells. I look forward to the day the US government no longer bans federal funding of this research. I’m all for private research, but the fact is medical research in the US is pretty much handled through the NIH.

Here’s all three:

Greener Green Energy: Today’s solar cells give more than they take
Science News, March 1, 2008Solar power produces, per unit of energy, only about one-tenth as much carbondioxide and other harmful emissions (during manufacturing) as does conventional power generation, a new study by Brookhaven National Laboratory scientists shows.

These improvements in efficiency mean that today’s solar panels can “pay back” in only 1 to 3 years the energy needed to make them, the study concludes.

Improvements in manufacturing efficiency could reduce emissions from solar power by another 50 percent within 5 to 7 years, the researchers say.
Read Original Article>>

Konarka Announces First-Ever Demonstration of Inkjet Printed Solar Cells
nanowerk, Mar. 3, 2008Konarka Technologies has announced the company conducted the first-ever demonstration of manufacturing organic solar cells by efficient inkjet printing.

Read Original Article>>

Cancers inhibited by embryonic stem cell protein
NewScientist.com news service, March 4, 2008Northwestern University researchers have discovered that a protein, Lefty, produced by human embryonic stem cells (hESCs) can inhibit the growth and spread of breast cancer and malignant melanoma.

Similarities between stem cells and tumors–both are self-renewing and have the capacity to give rise to different cells types–previously led the researchers to find the protein Nodal, which facilitates cell growth, and suggested that stem cells must have a way to control Nodal.

The Northwestern researchers found that was Lefty. When aggressive tumor cells were exposed to the chemical environment of hESCs, which contained Lefty, their Nodal production fell sharply, and the tumor cells became less invasive and even started to die.
Read Original Article>>