David Kirkpatrick

June 2, 2010

Copper nanowires may improve solar cells and displays

This is an interesting use of nanotech because it looks like it might be market-ready much sooner than later, and as team member Benjamin Wiley puts it, “If we are going to have these ubiquitous electronics and solar cells we need to use materials that are abundant in the earth’s crust and don’t take much energy to extract.”

Also from the link:

A team of Duke University chemists has perfected a simple way to make tiny copper nanowires in quantity. The cheap conductors are small enough to be transparent, making them ideal for thin-film solar cells, flat-screen TVs and computers, and flexible displays.

“Imagine a foldable iPad,” said Benjamin Wiley, an assistant professor of chemistry at Duke. His team reports its findings online this week in .

Nanowires made of  perform better than carbon nanotubes, and are much cheaper than silver nanowires, Wiley said

February 11, 2010

IBM comes up with solar breakthrough

Filed under: Business, Science — Tags: , , , , , — David Kirkpatrick @ 1:49 am

There’s been a lot of solar energy news to blog about lately. Nestled in this spate of announcements is a breakthrough at IBM — solar cells created from abundant materials, well a higher proportion of abundant elements, than previous cells. The practical result? Cheaper to produce cells that don’t lose anything in the efficiency department, and cost and efficiency are the two issues that will determine when solar power becomes a viable alternative energy source.

From the second link:

Researchers at IBM have increased the efficiency of a novel type of solar cell made largely from cheap and abundant materials by over 40 percent. According to an article published this week in the journal Advanced Materials, the new efficiency is 9.6 percent, up from the previous record of 6.7 percent for this type of solar cell, and near the level needed for commercial solar panels. The IBM solar cells also have the advantage of being made with an inexpensive ink-based process.

The new solar cells convert light into electricity using a semiconductor material made of copper, zinc, tin, and sulfur–all abundant elements–as well as the relatively rare element selenium (CZTS). Reaching near-commercial efficiency levels is a “breakthrough for this technology,” says Matthew Beard, a senior scientist at the National Renewable Energy Laboratory, who was not involved with the work.

Copper power: This prototype solar cell uses a copper-based material and has achieved record efficiencies for a cell of its kind.

Credit: IBM Research

Update — head below the fold for IBM’s release on the new solar cell. (more…)