David Kirkpatrick

May 21, 2010

Synthetic biology and ethics

Any regular readers of this blog know where I stand on this issue. (Hint: I’m a pretty big fan of synthetic biology.)

From the first link, the release:

Press Release: Moral Issues Raised by Synthetic Biology Subject of Hastings Center Project

Project completes third workshop as news of first synthetic bacterial genome announced

(Garrison NY) A Hastings Center workshop examining moral issues in synthetic biology completed its third meeting as the J. Craig Venter Group announced that it had created the first viable cell with a synthetic genome. “Synthetic biology certainly raises deep philosophical and moral questions about the human relationship to nature,” according to Gregory Kaebnick, a Hastings Center scholar who is managing the project. “It’s not clear what the answers to those questions are.  If  by ‘nature’ we mean the world around us, more or less as we found it, we may well decide that synthetic biology does not really change the human relationship to nature—and may even help us preserve what is left of it.”

Nor is it clear that the questions raised by synthetic biology are new ones. According to Thomas H. Murray, president of The Hastings Center and the project’s principal investigator, “We have come up against similar problems in other domains—most notably, in work on nanotechnology and gene transfer technology—but synthetic biology poses them especially sharply and pressingly.”

The Hastings Center has been at the forefront of interdisciplinary research into ethical issues in emerging technology. The synthetic biology project is funded by a grant from the Alfred P. Sloan Foundation . Project participants include synthetic biologists, bioethicists, philosophers, and public policy experts. The Center’s work is part of a comprehensive look at synthetic biology by the Alfred P. Sloan Foundation. Other participants in the initiative are the J. Craig Venter Institute and the Woodrow Wilson International Center for Scholars.

Here’s the release on the Venter Institute’s bacterial cell controlled by a synthetic genome. Head below the fold for the full text.

Scientists ‘boot up’ a bacterial cell with a synthetic genome

Method could be used to create bacteria designed for biofuel production, environmental cleanup

IMAGE: This is a schematic demonstrating the assembly of a synthetic M. mycoides genome in yeast.

Click here for more information.

Scientists have developed the first cell controlled by a synthetic genome. They now hope to use this method to probe the basic machinery of life and to engineer bacteria specially designed to solve environmental or energy problems.

The study will be published online by the journal Science, at the Science Express website, on Thursday, 20 May. Science is published by AAAS, the nonprofit science society.

The research team, led by Craig Venter of the J. Craig Venter Institute, has already chemically synthesized a bacterial genome, and it has transplanted the genome of one bacterium to another. Now, the scientists have put both methods together, to create what they call a “synthetic cell,” although only its genome is synthetic.

“This is the first synthetic cell that’s been made, and we call it synthetic because the cell is totally derived from a synthetic chromosome, made with four bottles of chemicals on a chemical synthesizer, starting with information in a computer,” said Venter.

“This becomes a very powerful tool for trying to design what we want biology to do. We have a wide range of applications [in mind],” he said.

For example, the researchers are planning to design algae that can capture carbon dioxide and make new hydrocarbons that could go into refineries. They are also working on ways to speed up vaccine production. Making new chemicals or food ingredients and cleaning up water are other possible benefits, according to Venter.

In the Science study, the researchers synthesized the genome of the bacterium M. mycoides and added DNA sequences that “watermark” the genome to distinguish it from a natural one.

IMAGE: These are images of M. mycoides JCVI-syn1.0 and WT M. mycoides.

Click here for more information.

Because current machines can only assemble relatively short strings of DNA letters at a time, the researchers inserted the shorter sequences into yeast, whose DNA-repair enzymes linked the strings together. They then transferred the medium-sized strings into E. coli and back into yeast. After three rounds of assembly, the researchers had produced a genome over a million base pairs long.

The scientists then transplanted the synthetic M. mycoides genome into another type of bacteria, Mycoplasm capricolum. The new genome “booted up” the recipient cells. Although fourteen genes were deleted or disrupted in the transplant bacteria, they still looked like normal M. mycoides bacteria and produced only M. mycoides proteins, the authors report.

“This is an important step we think, both scientifically and philosophically. It’s certainly changed my views of the definitions of life and how life works,” Venter said.

Acknowledging the ethical discussion about synthetic biology research, Venter explained that his team asked for a bioethical review in the late 1990s and has participated in variety of discussions on the topic.

“I think this is the first incidence in science where the extensive bioethical review took place before the experiments were done. It’s part of an ongoing process that we’ve been driving, trying to make sure that the science proceeds in an ethical fashion, that we’re being thoughtful about what we do and looking forward to the implications to the future,” he said.

###

This research paper and a related article by Science‘s News team are available here.

This research was funded by Synthetic Genomics, Inc. Three of the authors and the J. Craig Venter Institute hold Synthetic Genomics, Inc. stock. The J. Craig Venter Institute has filed patent applications on some of the techniques described in this paper.

The American Association for the Advancement of Science (AAAS) is the world’s largest general scientific society and publisher of the journals, Science (www.sciencemag.org), Science Signaling(www.sciencesignaling.org), and Science Translational Medicine (www.sciencetranslationalmedicine.org). AAAS was founded in 1848, and serves 262 affiliated societies and academies of science, reaching 10 million individuals. Science has the largest paid circulation of any peer-reviewed general science journal in the world, with an estimated total readership of 1 million. The non-profit AAAS (www.aaas.org) is open to all and fulfills its mission to “advance science and serve society” through initiatives in science policy; international programs; science education; and more. For the latest research news, log onto EurekAlert!,www.eurekalert.org, the premier science-news Web site, a service of AAAS.

Leave a Comment »

No comments yet.

RSS feed for comments on this post. TrackBack URI

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

Blog at WordPress.com.

%d bloggers like this: