David Kirkpatrick

September 8, 2008

Gold nanorods help fight cancer

Filed under: Science, Technology — Tags: , , , , , — David Kirkpatrick @ 11:00 pm

Nanoscale gold rods are a key component in heat-based cancer treatment.

From the link:

Cancer cells are relatively temperature-sensitive. This is exploited in treatments involving overheating of parts of the cancer patient’s body. One highly promising method is photoinduced hyperthermia, in which light energy is converted to heat. Gold nanoparticles absorb light very strongly in the near infrared, a spectral region that is barely absorbed by tissue. The absorbed light energy causes the gold particles to vibrate and is dissipated into the surrounding area as heat. The tiny gold particles can be functionalized so that the specifically bind to tumor cells. Thus, only cells that contain gold particles are killed off.

The problem? Ordinary spherical gold particles do not efficiently convert the light energy into heat; only rod-shaped particles will do. Unfortunately, the additives needed to crystallize the rod-shaped particles from aqueous solutions are cytotoxic.

The team headed by Michael R. Bockstaller is now pursuing a new strategy: instead of aqueous solution, they chose to use an ionic liquid as their medium of crystallization. Ionic liquids are “liquid salts”, organic compounds that exist as oppositely charged ions, but in the liquid state. In this way, the researchers have been able to produce gold nanorods without the use of any cytotoxic additives.

M. Bockstaller and his team have synthesized gold nanorods using an ionic liquid as a solvent. Gold nanorods are interesting starting materials in cancer therapy. (c)Wiley-VCH 2008

M. Bockstaller and his team have synthesized gold nanorods using an ionic liquid as a solvent. Gold nanorods are interesting starting materials in cancer therapy. (c)Wiley-VCH 2008

 

1 Comment »

  1. […] September 8, 2008 — Nanoscale gold rods are a key component in heat-based cancer treatment. The gold nanoparticles are designed to bind only with cancer cells. […]

    Pingback by Cancer and nanotechnology « David Kirkpatrick — March 13, 2010 @ 4:44 pm


RSS feed for comments on this post. TrackBack URI

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

%d bloggers like this: