David Kirkpatrick

July 30, 2010

High tech contact lenses and NASA

News from NASA hot from today’s inbox. And a bit of a departure from the expected space news out of NASA.

The release:

NASA Talk is High Tech Prescription for Contact Lenses

HAMPTON, Va., July 30 /PRNewswire-USNewswire/ — Imagine your contact lenses being able to improve your vision and tell your temperature.

(Logo: http://www.newscom.com/cgi-bin/prnh/20081007/38461LOGO)
(Logo: http://photos.prnewswire.com/prnh/20081007/38461LOGO)

On Tuesday, Aug. 3, at NASA’s Langley Research Center in Hampton, Professor Babak Parviz, from the University of Washington presents, “What If Your Contact Lens Could Show You Images” at 2 p.m. in the Reid Conference Center. Parviz will provide an overview of the process it took to build contact lenses to display and monitor information about a person’s health.

On Tuesday evening, Parviz will present a similar talk for the general public at 7:30 p.m. at the Virginia Air & Space Center in downtown Hampton. The evening presentation is free and no reservations are required.

Through advancements in nanotechnology, Parviz will explain the how contact lenses have been converted into systems that can complete extraordinary tasks.

Researchers at the University of Washington are working on integrating small optical, electronic and biosensing devices into contact lenses. The lenses are designed to display information to the user and to continuously monitor the person’s health through the biochemistry of the eye surface.

Parviz’ research at the University of Washington includes nanotechnology, bionanotechnolgy and microsystems. His work was chosen by Time magazine as one of the top inventions of the year in 2008 and is on display at the London Museum of Science.

Parviz attended the University of Michigan, earning graduate degrees in physics and electrical engineering and studied chemistry and chemical biology at Harvard University. The Massachusetts Institute of Technology Review selected Parviz as one of the top innovators under the age of 35 in 2007. He is also the recipient of the National Science Foundation Faculty Early Career Development Award for his exceptional integration of education and research.

For more information about NASA Langley’s Colloquium and Sigma Series Lectures:

http://shemesh.larc.nasa.gov/Lectures/

Photo:  http://www.newscom.com/cgi-bin/prnh/20081007/38461LOGO
http://photos.prnewswire.com/prnh/20081007/38461LOGO
PRN Photo Desk photodesk@prnewswire.com
Source: NASA

Web Site:  http://www.nasa.gov/

July 9, 2010

Beautiful science image — microfluidic devices

Hit this link for an entire gallery of microfluidic devices.

“Combinatorial Mixer” shows a section of a tiny mixing device. It takes two fluids, dilutes them into four, then mixes them in every possible combination. The result is this mesh of color

Credit: Lab on a Chip/ Chris Sip and Albert Folc

From the link:

A Flikr group called “Art on a Chip” shows an artistic side to a hot area of technology: microfluidics devices. In the group a vibrant collection of images shows cells, channels and fluids on the micro scale. Researchers are encouraged to upload a favorite picture captured through their research, says the curator of the online collection, Albert Folch, an associate professor in BioMEMs and Microfluidics at the University of Washington.

“Our fields of research are bursting with art,” Folch says in his introduction to the website. “I am willing to bet that your hard drive contains at least one gorgeous image that will make me catch my breath.”

March 11, 2010

The dice roll of multiple-processor computers

Garbage-in/garbage-out may be a computing truism, but getting the same result after entering the same commands ought to be a given. I didn’t realize this was even an issue with multiple-processor computers.

The release:

Conquering the chaos in modern, multiprocessor computers

Computers should not play dice. That, to paraphrase Einstein, is the feeling of a University of Washington computer scientist with a simple manifesto: If you enter the same computer command, you should get back the same result. Unfortunately, that is far from the case with many of today’s machines. Beneath their smooth exteriors, modern computers behave in wildly unpredictable ways, said Luis Ceze, a UW assistant professor of computer science and engineering.

“With older, single-processor systems, computers behave exactly the same way as long as you give the same commands. Today’s computers are non-deterministic. Even if you give the same set of commands, you might get a different result,” Ceze said.

He and UW associate professors of computer science and engineering Mark Oskin and Dan Grossman and UW graduate students Owen Anderson, Tom Bergan, Joseph Devietti, Brandon Lucia and Nick Hunt have developed a way to get modern, multiple-processor computers to behave in predictable ways, by automatically parceling sets of commands and assigning them to specific places. Sets of commands get calculated simultaneously, so the well-behaved program still runs faster than it would on a single processor.

Next week at the International Conference on Architectural Support for Programming Languages and Operating Systems (http://www.ece.cmu.edu/CALCM/asplos10/doku.php) in Pittsburgh, Bergan will present a software-based version of this system that could be used on existing machines. It builds on a more general approach the group published last year, which was recently chosen as a top paper for 2009 by the Institute of Electrical and Electronics Engineers’ journal Micro.

In the old days one computer had one processor. But today’s consumer standard is dual-core processors, and even quad-core machines are appearing on store shelves. Supercomputers and servers can house hundreds, even thousands, of processing units.

On the plus side, this design creates computers that run faster, cost less and use less power for the same performance delivered on a single processor. On the other hand, multiple processors are responsible for elusive errors that freeze Web browsers and crash programs.

It is not so different from the classic chaos problem in which a butterfly flaps its wings in one place and can cause a hurricane across the globe. Modern shared-memory computers have to shuffle tasks from one place to another. The speed at which the information travels can be affected by tiny changes, such as the distance between parts in the computer or even the temperature of the wires. Information can thus arrive in a different order and lead to unexpected errors, even for tasks that ran smoothly hundreds of times before.

“With multi-core systems the trend is to have more bugs because it’s harder to write code for them,” Ceze said. “And these concurrency bugs are much harder to get a handle on.”

One application of the UW system is to make errors reproducible, so that programs can be properly tested.

“We’ve developed a basic technique that could be used in a range of systems, from cell phones to data centers,” Ceze said. “Ultimately, I want to make it really easy for people to design high-performing, low-energy and secure systems.”

Last year Ceze, Oskin, and Peter Godman, a former director at Isilon Systems, founded a company to commercialize their technology. PetraVM (http://petravm.com/) is initially named after the Greek word for rock because it hopes to develop “rock-solid systems,” Ceze said. The Seattle-based startup will soon release its first product, Jinx, which makes any errors that are going to crop up in a program happen quickly.

“We can compress the effect of thousands of people using a program into a few minutes during the software’s development,” Ceze said. “We want to allow people to write code for multi-core systems without going insane.”

The company already has some big-name clients trying its product, Ceze said, though it is not yet disclosing their identities.

“If this erratic behavior irritates us, as software users, imagine how it is for banks or other mission-critical applications.”

###

Part of this research was funded by the National Science Foundation and a Microsoft Research fellowship.

More information on the research is at http://sampa.cs.washington.edu.

August 5, 2009

Solar cells, nanotech and plastics

This release involves using nanotechnology to help create that efficiently turn light into electricity, improving solar cells in the process.

The release:

Plastics that convert light to electricity could have a big impact

IMAGE: David Ginger, a University of Washington associate professor of chemistry, displays the tiny probe for a conductive atomic force microscope, used to record photocurrents on scales of millionths of an…

Click here for more information. 

Researchers the world over are striving to develop organic solar cells that can be produced easily and inexpensively as thin films that could be widely used to generate electricity.

But a major obstacle is coaxing these carbon-based materials to reliably form the proper structure at the nanoscale (tinier than 2-millionths of an inch) to be highly efficient in converting light to electricity. The goal is to develop cells made from low-cost plastics that will transform at least 10 percent of the sunlight that they absorb into usable electricity and can be easily manufactured.

A research team headed by David Ginger, a University of Washington associate professor of chemistry, has found a way to make images of tiny bubbles and channels, roughly 10,000 times smaller than a human hair, inside plastic solar cells. These bubbles and channels form within the polymers as they are being created in a baking process, called annealing, that is used to improve the materials’ performance.

The researchers are able to measure directly how much current each tiny bubble and channel carries, thus developing an understanding of exactly how a solar cell converts light into electricity. Ginger believes that will lead to a better understanding of which materials created under which conditions are most likely to meet the 10 percent efficiency goal.

As researchers approach that threshold, nanostructured plastic solar cells could be put into use on a broad scale, he said. As a start, they could be incorporated into purses or backpacks to charge cellular phones or mp3 players, but eventually they could make in important contribution to the electrical power supply.

Most researchers make plastic solar cells by blending two materials together in a thin film, then baking them to improve their performance. In the process, bubbles and channels form much as they would in a cake batter. The bubbles and channels affect how well the cell converts light into electricity and how much of the electric current actually gets to the wires leading out of the cell. The number of bubbles and channels and their configuration can be altered by how much heat is applied and for how long.

The exact structure of the bubbles and channels is critical to the solar cell’s performance, but the relationship between baking time, bubble size, channel connectivity and efficiency has been difficult to understand. Some models used to guide development of plastic solar cells even ignore the structure issues and assume that blending the two materials into a film for solar cells will produce a smooth and uniform substance. That assumption can make it difficult to understand just how much efficiency can be engineered into a polymer, Ginger said.

For the current research, the scientists worked with a blend of polythiophene and fullerene, model materials considered basic to organic solar cell research because their response to forces such as heating can be readily extrapolated to other materials. The materials were baked together at different temperatures and for different lengths of time.

Ginger is the lead author of a paper documenting the work, published online last month by the American Chemical Society journal Nano Letters and scheduled for a future print edition. Coauthors are Liam Pingree and Obadiah Reid of the UW. The research was funded by the National Science Foundation and the U.S. Department of Energy.

Ginger noted that the polymer tested is not likely to reach the 10 percent efficiency threshold. But the results, he said, will be a useful guide to show which new combinations of materials and at what baking time and temperature could form bubbles and channels in a way that the resulting polymer might meet the standard.

Such testing can be accomplished using a very small tool called an atomic force microscope, which uses a needle similar to the one that plays records on an old-style phonograph to make a nanoscale image of the solar cell. The microscope, developed in Ginger’s lab to record photocurrent, comes to a point just 10 to 20 nanometers across (a human hair is about 60,000 nanometers wide). The tip is coated with platinum or gold to conduct electrical current, and it traces back and forth across the solar cell to record the properties.

As the microscope traces back and forth over a solar cell, it records the channels and bubbles that were created as the material was formed. Using the microscope in conjunction with the knowledge gained from the current research, Ginger said, can help scientists determine quickly whether polymers they are working with are ever likely to reach the 10 percent efficiency threshold.

Making solar cells more efficient is crucial to making them cost effective, he said. And if costs can be brought low enough, solar cells could offset the need for more coal-generated electricity in years to come.

“The solution to the energy problem is going to be a mix, but in the long term solar power is going to be the biggest part of that mix,” he said.

 

###

November 27, 2008

Photons driving machines

Nanotech news.

The release:

‘The photon force is with us': Harnessing light to drive nanomachines

IMAGE: Photonic circuit in which optical force is harnessed to drive nanomechanics (inset)

Click here for more information. 

New Haven, Conn. — Science fiction writers have long envisioned sailing a spacecraft by the optical force of the sun’s light. But, the forces of sunlight are too weak to fill even the oversized sails that have been tried. Now a team led by researchers at the Yale School of Engineering & Applied Science has shown that the force of light indeed can be harnessed to drive machines — when the process is scaled to nano-proportions.

Their work opens the door to a new class of semiconductor devices that are operated by the force of light. They envision a future where this process powers quantum information processing and sensing devices, as well as telecommunications that run at ultra-high speed and consume little power.

The research, appearing in the November 27 issue of Nature, demonstrates a marriage of two emerging fields of research — nanophotonics and nanomechanics. – which makes possible the extreme miniaturization of optics and mechanics on a silicon chip.

The energy of light has been harnessed and used in many ways. The “force” of light is different — it is a push or a pull action that causes something to move.

“While the force of light is far too weak for us to feel in everyday life, we have found that it can be harnessed and used at the nanoscale,” said team leader Hong Tang, assistant professor at Yale. “Our work demonstrates the advantage of using nano-objects as “targets” for the force of light — using devices that are a billion-billion times smaller than a space sail, and that match the size of today’s typical transistors.”

Until now light has only been used to maneuver single tiny objects with a focused laser beam — a technique called “optical tweezers.” Postdoctoral scientist and lead author, Mo Li noted, “Instead of moving particles with light, now we integrate everything on a chip and move a semiconductor device.”

“When researchers talk about optical forces, they are generally referring to the radiation pressure light applies in the direction of the flow of light,” said Tang. “The new force we have investigated actually kicks out to the side of that light flow.”

While this new optical force was predicted by several theories, the proof required state-of-the-art nanophotonics to confine light with ultra-high intensity within nanoscale photonic wires. The researchers showed that when the concentrated light was guided through a nanoscale mechanical device, significant light force could be generated — enough, in fact, to operate nanoscale machinery on a silicon chip.

The light force was routed in much the same way electronic wires are laid out on today’s large scale integrated circuits. Because light intensity is much higher when it is guided at the nanoscale, they were able to exploit the force. “We calculate that the illumination we harness is a million times stronger than direct sunlight,” adds Wolfram Pernice, a Humboldt postdoctoral fellow with Tang.

“We create hundreds of devices on a single chip, and all of them work,” says Tang, who attributes this success to a great optical I/O device design provided by their collaborators at the University of Washington.

It took more than 60 years to progress from the first transistors to the speed and power of today’s computers. Creating devices that run solely on light rather than electronics will now begin a similar process of development, according to the authors.

“While this development has brought us a new device concept and a giant step forward in speed, the next developments will be in improving the mechanical aspects of the system. But,” says Tang, “the photon force is with us.”

 

###

 

Tang’s team at Yale also included graduate student Chi Xiong. Collaborators at University of Washington were Thomas Baehr-Jones and Michael Hochberg. Funding in support of the project came from the National Science Foundation, the Air Force Office of Scientific Research and the Alexander von Humboldt post-doctoral fellowship program.

Citation: Nature (November 27, 2008)

Hong Tang

Yale School of Engineering & Applied Science

July 16, 2008

Watch out for partially encrypted disks …

Filed under: Technology — Tags: , , , — David Kirkpatrick @ 10:06 pm

data can leak into the unencrypted sections potentially exposing what you might assume is protected information.

From the CIO.com link:

If you’re using encryption software to keep part of your computer’s hard drive private, you may have a problem, according to researchers at the University of Washington and British Telecommunications.

They’ve discovered that popular programs like Word and Google Desktop store data on unencrypted sections of a computer’s hard drive — even when the programs are working with encrypted files. “Information is spilling out from the encrypted region into the unencrypted region” said Tadayoshi Kohno, an assistant professor at the University of Washington in Seattle who co-authored the study.

He believes that there are probably many other applications and operating system components that leak out information in a similar way. “I suspect that this is a potentially huge issue. We’ve basically cracked the surface,” he said.

The researchers say that people who are using full-disk encryption, where every piece of data on their hard drive is encrypted, do not have to worry. However the issue pops up when users create an encrypted partition or virtual disk on their hard drives, leaving part of the drives unencrypted, or even when they store data on encrypted USB (Universal Serial Bus) devices, Kohno said.

The Silver is the New Black Theme. Blog at WordPress.com.

Follow

Get every new post delivered to your Inbox.

Join 26 other followers