David Kirkpatrick

September 7, 2010

From the department of, “no duh” …

… I’ll let this bit from KurzweilAI.net speak for itself:

Magic mushrooms reduce anxiety over cancer

September 7, 2010

Source: New Scientist Health, Sep 6, 2010

The active ingredient of magic mushrooms,  psilocybin, has been shown to reduce anxiety and improve mood in people with cancer. researchers from Harbor-UCLA Medical Center have found.

Volunteers reported feeling less depressed and anxious two weeks after receiving psilocybin. Six months later, the level of depression was significantly lower in all volunteers than it had been before the treatments began.

(Dohduhdah/Wikipedia Commons)

Read original article

Net neutrality and the FCC …

… a lot of talk (a whole lot of talk) and no action.

“Do Not Track” movement gaining traction in DC

“Do Not Track” would be akin to the “Do Not Call” list opt-out consumer registry to prevent unsolicited sales pitches and other calls, and right now looks to have a legitimate shot at reaching the proposed legislation level, if not further. The privacy advocacy, Consumer Watchdog, is running an ad in Times Square (on a 540-square foot digital billboard no less) mocking Google’s CEO Erik Schmidt as a snooping ice cream man.

Now Schmidt (and Facebook’s Mark Zuckerberg) have made some very boneheaded public statements about online privacy — and I’m a huge advocate of online privacy — but the reality is some level of tracking is necessary to keep the internet rolling along in its current fashion. Take away the legitimate revenue from data mining web user’s habits and all of a sudden you’ll be running into paywall after paywall of premium content. And on top of that, the technology to track web usage wouldn’t be going anywhere, it would just only be utilized by criminals or entities looking to circumvent anti tracking regulations.

Because of Schmidt and Zuckerberg’s public idiocy on online privacy, and actual privacy gaffes like Facebook’s well-publicized multiple self-inflicted wounds, the general public is much more aware of exactly how tracked they are, and even if they don’t understand exactly how that data is used, they don’t like it. Consumer Watchdog’s commissioned poll (grain of salt here due to the poll’s source) found 80 percent of the public supporting a “Do Not Track” registry. That is a high number.

So now that the online privacy debate has gone mainstream, look for likely legislation to his Washington sometime soon. And if all comes to pass, the Federal Trade Commission may get its say in this process. Is that what anyone really wants? I doubt it.

From the link:

Do Not Track legislation would be similar to the national Do Not Call registry, allowing consumers to opt out of having their web activities tracked for advertising purposes. It is a concept that has gained surprising momentum -  surprising, given the gridlock that otherwise exists on Capitol Hill – and could well be proposed as legislation in the upcoming session. House Energy and Commerce Communications Subcommittee ChairmanRick Boucher, D-Va., and Energy and Commerce Consumer Protection Subcommittee ChairmanBobby Rush, D-Ill., are working on privacy legislation that they hope to have ready for for the next Congress. The Do Not Call list would likely be included.

Then there is the Federal Trade Commission. FTC Chairman Jon Leibowitz told a Senate panel that the commission is exploring the idea as well (via Nextgov). The opt-out process could be run by the FTC or some private sector entity, he suggested.

September 6, 2010

Self-assembling and reassembling solar cells

Okay, just yesterday I blogged that a lot of the time the mundane “a ha” moment that puts together well-known materials and processes leads to scientific advancement (the case I was referring to in the post was a simple acid bath technique that made creating solar cells much cheaper). And then again sometimes the big sexy breakthrough gets the headline (as usual) and really deserves it.

If this technique for solar cells that self-assembles the light-harvesting element in the cell, and then breaks it down for re-assembly essentially copying what plants do in their chloroplast, is able to reach acceptable levels of efficiency, it will be an absolute game-changer. Instead of a solar cell that’s (hopefully) constantly bombarded with the full effect of the sun and constantly degrading under the solar assault, these cells will essentially be completely renewed by each reassembly. No degradation over time, just a brand new light-harvesting element with a relatively simple chemical process.

From the second link:

The system Strano’s team produced is made up of seven different compounds, including the carbon nanotubes, the phospholipids, and the proteins that make up the reaction centers, which under the right conditions spontaneously assemble themselves into a light-harvesting structure that produces an electric current. Strano says he believes this sets a record for the complexity of a self-assembling system. When a surfactant — similar in principle to the chemicals that BP has sprayed into the Gulf of Mexico to break apart oil — is added to the mix, the seven components all come apart and form a soupy solution. Then, when the researchers removed the surfactant by pushing the solution through a membrane, the compounds spontaneously assembled once again into a perfectly formed, rejuvenated photocell.

“We’re basically imitating tricks that nature has discovered over millions of years” — in particular, “reversibility, the ability to break apart and reassemble,” Strano says. The team, which included postdoctoral researcher Moon-Ho Ham and graduate student Ardemis Boghossian, came up with the system based on a theoretical analysis, but then decided to build a prototype cell to test it out. They ran the cell through repeated cycles of assembly and disassembly over a 14-hour period, with no loss of efficiency.

September 5, 2010

The GOP’s demographic problem

Filed under: et.al., Politics — Tags: , , , , , , , — David Kirkpatrick @ 7:25 pm

The Republican Party can legitimately lick its chops getting ready for the upcoming midterms. It would take more than an epic collapse of public opinion to keep November from being an absolute bloodbath for Democrats. Looking down the road, however, things are little more bleak, and the darkest spot is the demographic reality of the United States electorate in the coming decades.

After serious outreach during the first Bush 43 term (largely orchestrated by Karl Rove), the GOP has done nothing to court the Latino vote and a whole lot to alienate Hispanics of all ages. It’s no stretch to say the Republican Party has absolutely destroyed at least three generations of a bloc that otherwise would be fairly sympathetic to a socially conservative pro-business message.

Take a moment to think about all the ways the GOP has turned on Latinos — starting with the extreme immigration stances around the nation — and then ponder these numbers:

  • 62% of Hispanics are under the age of 34.
  • 33% of Hispanics will be under the age of 18.
  • In Texas, California, New Mexico, Hawaii and the District of Columbia, the white portion of the population is already a minority (representing less than 50%).
  • At the DMA, level there will be 19 markets where the minority is the majority. In 15 of them, the dominant minority is Hispanic; in two markets the dominant minority is Black, and in Hawaii, of course, it’s the Asian/Pacific Islander.
  • By 2020, minorities are expected to account for 40% of the country.

See a little problem there? Now the figures above came from an Ad Age blog post and not a political consultant, but that should be cause for even more concern because marketers are not going to fudge demographic numbers since doing so would only serve to reduce the effectiveness of marketing efforts. Political numbers on the other hand are about as reliable as a weather forecast. Pretty much any demographic numbers coming from a political source have been massaged to placate someone. Maybe not massaged a whole lot, but you can bet the numbers have been skewed one way or another.

Going back to the Ad Age piece, Isaac Mizrahi, co-author on a paper covering  how the 2010 census is going to affect marketing, was quoted thusly, ” … in today’s economy, marketing to ethnic minorities may possibly be the competitive advantage they need.” I think we all know the answer to the question of how the GOP has been marketing to minorities, particularly Hispanics. Couple the last six years or so of Republican rhetoric excoriating Latinos with the latest iteration of hard nativism sweeping the party and the long-term prospects of the GOP don’t look so good. Will the 2010 election cycle be the last hurrah for the current GOP? Demographic numbers say yes.

Papers are going somewhere

Filed under: Business, Media, Technology — Tags: , , , , — David Kirkpatrick @ 3:16 pm

And that somewhere is a path that leads to fewer pages, fewer ads and much lower revenue. Most dailies have essentially priced themselves into a pure luxury good for people who just like the smell of the ink and the feel of the newsprint under finger (I admit to falling into that category even though I no loner take a daily paper.)

Rishad Tobaccowala writes at Adweek on the future of the newspaper industry in a piece titled, “Papers Aren’t Going Anywhere,” and sees a relatively bright future, particularly in serving the local community. The problem with the article is it’s really about the reinvention of traditional print media into something completely different. Yes, if the newspaper industry can adapt to a brand new world, significantly alter business models and realize they don’t stand alone as arbiters of what news their market gets to consume then yeah, the newspaper industry might pull out of the current death spiral. I wouldn’t bet on it, though.

Here’s the four changes Tobaccowala’s sees as necessary for newspapers:

Having spent some time with senior and junior personnel across the newspaper industry, I know they know the perils they face. Many are making the difficult decisions and changes necessary to thrive. These changes are taking places in the following areas:

1. Culture: The newspaper industry needs to be reinvigorated. The people who created the cash cow of the paper package need help to create challenger products that will supplement and even cannibalize the newspaper. In many papers a cultural and organizational soap opera is occurring. I bet on the next generation to win since nothing trumps survival.

2. Technology: Organizations need to elevate the role of technology and technology partnerships to board-level status. The future will be about how to use technology to curate, combine and aid discovery of articles to relevant audiences at scale. This will require world-class technology smarts.

3. Partnering: In addition to technology partnerships, newspapers need to find ways to continue to embrace other voices into their bundle of products and services. These include the blogging community, the Yelps of the world and all the people outside the industry who are trying to reinvent the industry. We are living in a world of links and connections and, oddly, to be more competitive thinking synergistically is better than thinking competitively

4. Focus: Each news organization has to decide what it makes, what it shares and what it borrows. Vertical integration may be fine for Apple, but doing all things is a no go for most other firms. Each newspaper needs to determine what it’s best at or what, with investment, it could be best at. Share and borrow the rest.

Acid bath creates cheaper solar cells

A relatively simple brute force manufacturing step creates solar cells at much lower cost. The big, sexy breakthroughs are great  and technological leaps are fun, but a lot of the time it’s the almost mundane “a ha” moment that puts together well-known materials and processes that take a technology to the next step. This particular discovery sounds very promising since it both reduces production costs and almost retains maximum solar efficiency.

From the link:

A new low-cost etching technique developed at the U.S. Department of Energy’s National Renewable Energy Laboratory can put a trillion holes in a silicon wafer the size of a compact disc.

As the tiny holes deepen, they make the silvery-gray silicon appear darker and darker until it becomes almost pure black and able to absorb nearly all colors of light the sun throws at it.

At room temperature, the black silicon wafer can be made in about three minutes. At 100 degrees F, it can be made in less than a minute.

The breakthrough by NREL scientists likely will lead to lower-cost  that are nonetheless more efficient than the ones used on rooftops and in solar arrays today.

R&D Magazine recently awarded the NREL team one of its R&D 100 awards for Black Silicon Nanocatalytic Wet-Chemical Etch. Called “the Oscars of Invention,” the R&D 100 awards recognize the most significant scientific breakthroughs of the year.

Also from the link (and conveniently making my point above about “almost mundane ‘a ha’ moment”s):

In a string of outside-the-box insights combined with some serendipity, Branz and colleagues Scott Ward, Vern Yost and Anna Duda greatly simplified that process.

Rather than laying the gold with vacuums and pumps, why not just spray it on? Ward suggested.

Rather than layering the gold and then adding the acidic mixture, why not mix it all together from the outset? Dada suggested.

In combination, those two suggestions yielded even better results.

A silver wafer reflects the face of NREL research scientist Hao-Chih Yuan, before the wafer is washed with a mix of acids. The acids etch holes, absorbing light and turning the wafer black. Credit: Dennis Schroeder

September 3, 2010

Christina Romer on solving the current level of unemployment

Short version? Cut taxes and crank up spending to give the economy a boost.

Graphene transistors hit 300 GHz

Via KurzweilAI.net — Great news, but as always I’d love to see a market-ready application come out of this research in the near future. Blogging about nanotech breakthroughs is all well and good, but it is excellent when I get the chance to blog about a real-world application of said breakthroughs.

From the link:

High-speed graphene transistors achieve world-record 300 GHz

September 3, 2010 by Editor

UCLA researchers have fabricated the fastest  graphene transistor to date, using a new fabrication process with a  nanowire as a self-aligned gate.

Self-aligned gates are a key element in modern transistors, which are semiconductor devices used to amplify and switch electronic signals.  Gates are used to switch the transistor between various states, and self-aligned gates were developed to deal with problems of misalignment encountered because of the shrinking scale of electronics.

“This new strategy overcomes two limitations previously encountered in graphene transistors,” professor of chemistry and biochemistry Xiangfeng Duan said. “First, it doesn’t produce any appreciable defects in the graphene during fabrication, so the high carrier mobility is retained. Second, by using a self-aligned approach with a nanowire as the gate, the group was able to overcome alignment difficulties previously encountered and fabricate very short-channel devices with unprecedented performance.”

These advances allowed the team to demonstrate the highest speed graphene transistors to date, with a cutoff frequency up to 300 GHz — comparable to the very best transistors from high-electron mobility materials such gallium arsenide or indium phosphide.

Graphene, a one-atom-thick layer of graphitic carbon, has great potential to make electronic devices such as radios, computers and phones faster and smaller. With the highest known carrier mobility — the speed at which electronic information is transmitted by a material — graphene is a good candidate for high-speed radio-frequency electronics. High-speed radio-frequency electronics may also find wide applications in microwave communication, imaging and radar technologies.

Funding for this research came from the National Science Foundation and the National Institutes of Health.

More info: UCLA news

Cool nanotech image — a 2-water molecule thick ice crystal

Researchers used graphene to trap the room-temperature ice on a mica surface.

Atomic force micrograph of ~1 micrometer wide × 1.5 micrometers (millionths of a meter) tall area. The ice crystals (lightest blue) are 0.37 nanometers (billionths of a meter) high, which is the height of a 2-water molecule thick ice crystal. A one-atom thick sheet of graphene is used to conformally coat and trap water that has adsorbed onto a mica surface, permitting it to be imaged and characterized by atomic force microscopy. Detailed analysis of such images reveals that this (first layer) of water is ice, even at room temperature. At high humidity levels, a second layer of water will coat the first layer, also as ice. At very high humidity levels, additional layers of water will coat the surface as droplets. Credit: Heath group/Caltech

Hit the link for the full story on this image.

Balancing national security and privacy on the internet

An interesting breakdown on the current state of online privacy versus national security.

From the link:

In the wake of revelations that the US military network was compromised in 2008, and that US digital interests are under a relative constant threat of attack, the Pentagon is establishing new cyber security initiatives to protect the Internet. The Pentagon strategy–which is part digital NATO, part digital civil defense, and part Big Brother–may ruffle some feathers and raise concerns that the US Internet is becoming a military police state.

The mission of the United States Department of Defense is to provide military forces needed to deter war and protect the security of the nation. The scope of that mission includes emerging threats and the need to deter cyber war and protect the digital security of the nation as well. To fulfill that mission in an increasingly connected world, and with a rising threat of digital attack, the Pentagon wants to expand its sphere of influence.

This really is a tough issue. Certainly you want the nation to be safe, but at the same time the internet is largely a borderless “pseudo-nation” and clamping down too hard — not unlike the great firewall of China — can stifle much of what makes the net great. No easy answers here, but dramatically increasing the power of the government — particularly the military — over the private sector is not an acceptable solution.

Coming soon, stem cell factories?

Filed under: Science — Tags: , , , , , — David Kirkpatrick @ 11:29 am

News from the world of stem cell research. This item comes from the United Kingdom, and if the current political climate on the right towards ground-breaking science and medical research holds fast most stem cell news will be coming from anywhere but the United States.

This development does look very promising.

From the link:

In a paper published in the September edition of , a team of Nottingham scientists led by Professor Morgan Alexander in the University’s School of Pharmacy, reveal they have discovered some man-made acrylate polymers which allow stem cells to reproduce while maintaining their pluripotency.

Professor Alexander said: “This is an important breakthrough which could have significant implications for a wide range of stem cell therapies, including cancer, heart failure, muscle damage and a number of neurological disorders such as Parkinson’s and Huntington’s.

“One of these new manmade materials may translate into an automated method of growing  which will be able to keep up with demand from emerging therapies that will require cells on an industrial scale, while being both cost-effective and safer for patients.”

Beautiful space image — Supernova 1987A

Sometimes when I run a “beautiful space image” post the beauty is in the awe-inspiringness of the image, and other times the photo might not be much to look at, but it is just amazing on its own merits.

And then sometimes it really is just beautiful.

From the third link, enjoy …

A team of astronomers led by the University of Colorado at Boulder is charting the interactions between Supernova 1987A and a glowing gas ring encircling the supernova remnant known as the “String of Pearls.” Credit: NASA

Also from the link:

The team detected significant brightening of the emissions from Supernova 1987A, which were consistent with some theoretical predictions about how supernovae interact with their immediate galactic environment. Discovered in 1987, Supernova 1987A is the closest  to Earth to be detected since 1604 and resides in the nearby , a  adjacent to our own Milky Way Galaxy.

The team observed the supernova in optical, ultraviolet and near-infrared light, charting the interplay between the  and the famous “String of Pearls,” a glowing ring 6 trillion miles in diameter encircling the supernova remnant that has been energized by X-rays. The gas ring likely was shed some 20,000 years before the supernova exploded, and  rushing out from the remnant have been brightening some 30 to 40 pearl-like “hot spots” in the ring — objects that likely will grow and merge together in the coming years to form a continuous, glowing circle.

September 2, 2010

NASA’s going to the sun

And announcing the first five solar missions. No need to rush and book reservations, though, since this mission is a good eight years from launch.

News hot from today’s inbox.

The release:

NASA Selects Investigations for First Mission to Encounter the Sun

WASHINGTON, Sept. 2 /PRNewswire-USNewswire/ — NASA has begun development of a mission to visit and study the sun closer than ever before. The unprecedented project, named Solar Probe Plus, is slated to launch no later than 2018.

(Logo: http://photos.prnewswire.com/prnh/20081007/38461LOGO)
(Logo: http://www.newscom.com/cgi-bin/prnh/20081007/38461LOGO)

The small car-sized spacecraft will plunge directly into the sun’s atmosphere approximately four million miles from our star’s surface. It will explore a region no other spacecraft ever has encountered. NASA has selected five science investigations that will unlock the sun’s biggest mysteries.

“The experiments selected for Solar Probe Plus are specifically designed to solve two key questions of solar physics –  why is the sun’s outer atmosphere so much hotter than the sun’s visible surface and what propels the solar wind that affects Earth and our solar system?” said Dick Fisher, director of NASA’s Heliophysics Division in Washington. “We’ve been struggling with these questions for decades and this mission should finally provide those answers.”

As the spacecraft approaches the sun, its revolutionary carbon-composite heat shield must withstand temperatures exceeding 2550 degrees Fahrenheit and blasts of intense radiation. The spacecraft will have an up close and personal view of the sun enabling scientists to better understand, characterize and forecast the radiation environment for future space explorers.

NASA invited researchers in 2009 to submit science proposals. Thirteen were reviewed by a panel of NASA and outside scientists. The total dollar amount for the five selected investigations is approximately $180 million for preliminary analysis, design, development and tests.

The selected proposals are:

– Solar Wind Electrons Alphas and Protons Investigation: principal investigator, Justin C. Kasper, Smithsonian Astrophysical Observatory in Cambridge, Mass. This investigation will specifically count the most abundant particles in the solar wind — electrons, protons and helium ions — and measure their properties. The investigation also is designed to catch some of the particles in a special cup for direct analysis.

– Wide-field Imager: principal investigator, Russell Howard, Naval Research Laboratory in Washington. This telescope will make 3-D images of the sun’s corona, or atmosphere. The experiment actually will see the solar wind and provide 3-D images of clouds and shocks as they approach and pass the spacecraft. This investigation complements instruments on the spacecraft providing direct measurements by imaging the plasma the other instruments sample.

– Fields Experiment: principal investigator, Stuart Bale, University of California Space Sciences Laboratory in Berkeley, Calif. This investigation will make direct measurements of electric and magnetic fields, radio emissions, and shock waves that course through the sun’s atmospheric plasma. The experiment also serves as a giant dust detector, registering voltage signatures when specks of space dust hit the spacecraft’s antenna.

– Integrated Science Investigation of the Sun: principal investigator, David McComas of the Southwest Research Institute in San Antonio. This investigation consists of two instruments that will take an inventory of elements in the sun’s atmosphere using a mass spectrometer to weigh and sort ions in the vicinity of the spacecraft.

– Heliospheric Origins with Solar Probe Plus: principal investigator, Marco Velli of NASA’s Jet Propulsion Laboratory in Pasadena, Calif. Velli is the mission’s observatory scientist, responsible for serving as a senior scientist on the science working group. He will provide an independent assessment of scientific performance and act as a community advocate for the mission.

“This project allows humanity’s ingenuity to go where no spacecraft has ever gone before,” said Lika Guhathakurta, Solar Probe Plus program scientist at NASA Headquarters, in Washington. “For the very first time, we’ll be able to touch, taste and smell our sun.”

The Solar Probe Plus mission is part of NASA’s Living with a Star Program. The program is designed to understand aspects of the sun and Earth’s space environment that affect life and society. The program is managed by NASA’S Goddard Space Flight Center in Greenbelt, Md., with oversight from NASA’s Science Mission Directorate’s Heliophysics Division. The Johns Hopkins University Applied Physics Laboratory in Laurel, Md., is the prime contractor for the spacecraft.

For more information about the Solar Probe Plus mission, visit:
http://solarprobe.gsfc.nasa.gov/

For more information about the Living with a Star Program, visit:
http://science.nasa.gov/about-us/smd-programs/living-with-a-star/

Photo:  http://www.newscom.com/cgi-bin/prnh/20081007/38461LOGO
PRN Photo Desk photodesk@prnewswire.com
http://photos.prnewswire.com/prnh/20081007/38461LOGO
Source: NASA

Web Site:  http://www.nasa.gov/

On Sarah Palin …

Filed under: Media, Politics — Tags: , , , , — David Kirkpatrick @ 4:48 pm

“This is a person for whom there is no topic too small to lie about. She lies about everything.”

– Michael Joseph Gross, author of a recent Vanity Fair piece on the ex governor of Alaska

And this quote comes from someone who admits to heading into writing the Vanity Fair article, ” … with a prejudice in her favor.” So for Palin, with friends like these, who needs — well, you know the rest.

(Hat tip: the Daily Dish)

William Gibson on Google

Filed under: Business, Media, Technology — Tags: , , , , , , — David Kirkpatrick @ 11:24 am

William Gibson is one of my favorite authors — reading Neuromancer when it came out was a life-changer for me in terms of literature, science fiction and general outlook — and he has an interesting op-ed at the New York Times on the global reach of Google. He describes the relationship between the behemoth tech company and its users this way, “We are part of a post-geographical, post-national super-state.” And adds, “We’re citizens, but without rights.”

From the third link:

We have yet to take Google’s measure. We’ve seen nothing like it before, and we already perceive much of our world through it. We would all very much like to be sagely and reliably advised by our own private genie; we would like the genie to make the world more transparent, more easily navigable. Google does that for us: it makes everything in the world accessible to everyone, and everyone accessible to the world. But we see everyone looking in, and blame Google.

Google is not ours. Which feels confusing, because we are its unpaid content-providers, in one way or another. We generate product for Google, our every search a minuscule contribution. Google is made of us, a sort of coral reef of human minds and their products. And still we balk at Mr. Schmidt’s claim that we want Google to tell us what to do next. Is he saying that when we search for dinner recommendations, Google might recommend a movie instead? If our genie recommended the movie, I imagine we’d go, intrigued. If Google did that, I imagine, we’d bridle, then begin our next search.

Meet the new boss …

Filed under: Business, et.al., Technology — Tags: , , , — David Kirkpatrick @ 10:14 am

… not even close to same as the old boss (with apologies to the Who.)

Get ready to bow down to your robotic overlord supervisor.

From the link:

Remember the Segway? It never quite revolutionized transportation, but a similar mobility technology now underpins this tele presence robot, called Anybot. It glides on two wheels around an office or factory to let workers videoconference with the boss, who can control the contraption from a remote keyboard.

To my mind it looks more like a cop from a 80s-era science fiction movie more than anything:

Product: Anybot

Cost: $15,000

Availability: November

Source: www.anybots.com

Company: Anybots

Cool nanotech image — the perfect nanocube

Check this out

Caption: These electron microscope images show perfect-edged nanocubes produced in a one-step process created at NIST that allows careful control of the cubes’ size, shape and composition.

Credit: NIST

Usage Restrictions: None

Related news release: The perfect nanocube: Precise control of size, shape and composition

And:

Caption: These electron microscope images show perfect-edged nanocubes produced in a one-step process created at NIST that allows careful control of the cubes’ size, shape and composition.

Credit: NIST

Usage Restrictions: None

Related news release: The perfect nanocube: Precise control of size, shape and composition

Head below the fold for the accompanying release: (more…)

Food for not so easy thought

Everyone thought the biggest threat from China was the sheer volume of Treasuries held by that nation and the potential stranglehold it has over the U.S. economy. Realistically that has never been a real issue because as such a heavy investor in the U.S. economy, China has a vested interest in our financial sector remaining strong.

Now squeezing us on manufacturing vital elements of computing and electronics by taking complete control over rare earth metals is a different angle of attack altogether. You know the U.S. government is taking this very seriously when it has both the energy department and the DoD on the job.

The release:

China’s monopoly on 17 key elements sets stage for supply crisis

China’s monopoly on the global supply of elements critical for production of computer hard disc drives, hybrid-electric cars, military weapons, and other key products — and its increasingly strict limits on exports — is setting the stage for a crisis in the United States. That’s the topic of the cover story of Chemical & Engineering News (C&EN), ACS’ weekly newsmagazine.

C&EN Senior Editor Mitch Jacoby and Contributing Editor Jessie Jiang explain that the situation involves a family of chemical elements that may soon start to live up to their name, the “rare earths.” China has virtually cornered the global market on them, and produces most of the world’s supply. Since 2005, China has been raising prices and restricting exports, most recently in 2010, fostering a potential supply crisis in the U.S.

The article describes how the U.S. is now responding to this emerging crisis. To boost supplies, for instance, plans are being developed to resume production at the largest U.S. rare-earth mine — Mountain Pass in southern California — which has been dormant since 2002. The U.S. Department of Energy and the Department of Defense are among the government agencies grappling with the problem.

###

ARTICLE FOR IMMEDIATE RELEASE “Securing the Supply of Rare Earths”

This story is available at http://pubs.acs.org/cen/coverstory/88/8835cover.html

Cool space image — galaxy NGC 4666

Filed under: et.al., Science — Tags: , , , , , — David Kirkpatrick @ 1:05 am

Enjoy

This visible light image, made with the Wide Field Imager on the MPG/ESO 2.2-meter telescope at the La Silla Observatory in Chile, shows the galaxy NGC 4666 in the center. It is a starburst galaxy, about 80 million light-years from Earth, in which particularly intense star formation is taking place. The starburst is thought to be caused by gravitational interactions with neighboring galaxies, including NGC 4668, visible to the lower left. A combination of supernova explosions and strong winds from massive stars in the starburst region drives a vast outflow of gas from the galaxy into space — a so-called “superwind”. NGC 4666 had previously been observed in X-rays by the ESA XMM-Newton space telescope, and these visible light observations were made to target background objects detected in the earlier X-ray images. This picture, which covers a field of 16 by 12 arcminutes, is a combination of twelve CCD frames, 67 megapixels each, taken through blue, green and red filters. Credit: ESO/J. Dietrich

Hit the link up there for more about NGC 4666, and a (sorta cheesy) video of its location in space. And for even more info, here’s the release.

Improvements in LED lighting coming?

Looks pretty promising. I haven’t blogged about alternative lighting in a while, but I remain very fascinated about the potential for LED lighting. I have two LED bulbs right now, and as cool as they are (figuratively and literally) they suffer from the main complaints against LEDs right now — they are quite dim (albeitly by design in these particular bulb’s case) and they are very unidirectional and suitable only for spot lighting applications.

Here’s the latest news in LEDs and looks to be quite ambitious and very interesting. I’m looking forward to being able to replace all my residential lighting with crazy long-lasting and cheap-to-run LEDs.

From the link:

Researchers from the Nichia Corporation in Tokushima, Japan, have set an ambitious goal: to develop a white LED that can replace every interior and exterior light bulb currently used in homes and offices. The properties of their latest white LED – a luminous flux of 1913 lumens and a luminous efficacy of 135 lumens per watt at 1 amp – enable it to emit more light than a typical 20-watt fluorescent bulb, as well as more light for a given amount of power. With these improvements, the researchers say that the new LED can replace traditional fluorescent bulbs for all general lighting applications, and also be used for automobile headlights and LCD backlighting.

The history of luminous efficacy in different types of lighting shows the rapid improvements in white LEDs. The years in which the white light sources were developed are also shown. Credit: Yukio Narukawa, et al.

September 1, 2010

Neal Stephenson’s “The Mongoliad”

Filed under: et.al. — Tags: , , , , , , — David Kirkpatrick @ 11:30 am

Via KurzweilAI.net — This sounds like a very cool venture from one of my long-time favorite science fiction authors.

From the link:

Writer Neal Stephenson unveils his digital novel The Mongoliad

September 1, 2010

Source: VentureBeat, Aug 31, 2010

[+]

Author Neal Stephenson has launched Subutai, which has developed the “PULP platform” for creating digital novels, using a new model for publishing books in which authors can add additional material like background articles, images, music, and video. There are also social features that allow readers to create their own profiles, earn badges for activity on the site or in the application, and interact with other readers..

Their first book  is Stephenson’s The Mongoliad, about the Mongol invasion of Europe.

Stephenson has been credited for inspiring today’s virtual world startups with his novel Snow Crash.

Read original article

More memory news …

… to join this earlier post from today on memristor storage, this one on silicon nanocrystals and 3D storage.

From the second link, the release:

Silicon oxide circuits break barrier

Nanocrystal conductors could lead to massive, robust 3-D storage

Rice University scientists have created the first two-terminal memory chips that use only silicon, one of the most common substances on the planet, in a way that should be easily adaptable to nanoelectronic manufacturing techniques and promises to extend the limits of miniaturization subject to Moore’s Law.

Last year, researchers in the lab of Rice Professor James Tour showed how electrical current could repeatedly break and reconnect 10-nanometer strips of graphite, a form of carbon, to create a robust, reliable memory “bit.” At the time, they didn’t fully understand why it worked so well.

Now, they do. A new collaboration by the Rice labs of professors Tour, Douglas Natelson and Lin Zhong proved the circuit doesn’t need the carbon at all.

Jun Yao, a graduate student in Tour’s lab and primary author of the paper to appear in the online edition of Nano Letters, confirmed his breakthrough idea when he sandwiched a layer of silicon oxide, an insulator, between semiconducting sheets of polycrystalline silicon that served as the top and bottom electrodes.

Applying a charge to the electrodes created a conductive pathway by stripping oxygen atoms from the silicon oxide and forming a chain of nano-sized silicon crystals. Once formed, the chain can be repeatedly broken and reconnected by applying a pulse of varying voltage.

The nanocrystal wires are as small as 5 nanometers (billionths of a meter) wide, far smaller than circuitry in even the most advanced computers and electronic devices.

“The beauty of it is its simplicity,” said Tour, Rice’s T.T. and W.F. Chao Chair in Chemistry as well as a professor of mechanical engineering and materials science and of computer science. That, he said, will be key to the technology’s scalability. Silicon oxide switches or memory locations require only two terminals, not three (as in flash memory), because the physical process doesn’t require the device to hold a charge.

It also means layers of silicon-oxide memory can be stacked in tiny but capacious three-dimensional arrays. “I’ve been told by industry that if you’re not in the 3-D memory business in four years, you’re not going to be in the memory business. This is perfectly suited for that,” Tour said.

Silicon-oxide memories are compatible with conventional transistor manufacturing technology, said Tour, who recently attended a workshop by the National Science Foundation and IBM on breaking the barriers to Moore’s Law, which states the number of devices on a circuit doubles every 18 to 24 months.

“Manufacturers feel they can get pathways down to 10 nanometers. Flash memory is going to hit a brick wall at about 20 nanometers. But how do we get beyond that? Well, our technique is perfectly suited for sub-10-nanometer circuits,” he said.

Austin tech design company PrivaTran is already bench testing a silicon-oxide chip with 1,000 memory elements built in collaboration with the Tour lab. “We’re real excited about where the data is going here,” said PrivaTran CEO Glenn Mortland, who is using the technology in several projects supported by the Army Research Office, National Science Foundation, Air Force Office of Scientific Research, and the Navy Space and Naval Warfare Systems Command Small Business Innovation Research (SBIR) and Small Business Technology Transfer programs.

“Our original customer funding was geared toward more high-density memories,” Mortland said. “That’s where most of the paying customers see this going. I think, along the way, there will be side applications in various nonvolatile configurations.”

Yao had a hard time convincing his colleagues that silicon oxide alone could make a circuit. “Other group members didn’t believe him,” said Tour, who added that nobody recognized silicon oxide’s potential, even though it’s “the most-studied material in human history.”

“Most people, when they saw this effect, would say, ‘Oh, we had silicon-oxide breakdown,’ and they throw it out,” he said. “It was just sitting there waiting to be exploited.”

In other words, what used to be a bug turned out to be a feature.

Yao went to the mat for his idea. He first substituted a variety of materials for graphite and found none of them changed the circuit’s performance. Then he dropped the carbon and metal entirely and sandwiched silicon oxide between silicon terminals. It worked.

“It was a really difficult time for me, because people didn’t believe it,” Yao said. Finally, as a proof of concept, he cut a carbon nanotube to localize the switching site, sliced out a very thin piece of silicon oxide by focused ion beam and identified a nanoscale silicon pathway under a transmission electron microscope.

“This is research,” Yao said. “If you do something and everyone nods their heads, then it’s probably not that big. But if you do something and everyone shakes their heads, then you prove it, it could be big.

“It doesn’t matter how many people don’t believe it. What matters is whether it’s true or not.”

Silicon-oxide circuits carry all the benefits of the previously reported graphite device. They feature high on-off ratios, excellent endurance and fast switching (below 100 nanoseconds).

They will also be resistant to radiation, which should make them suitable for military and NASA applications. “It’s clear there are lots of radiation-hardened uses for this technology,” Mortland said.

Silicon oxide also works in reprogrammable gate arrays being built by NuPGA, a company formed last year through collaborative patents with Rice University. NuPGA’s devices will assist in the design of computer circuitry based on vertical arrays of silicon oxide embedded in “vias,” the holes in integrated circuits that connect layers of circuitry. Such rewritable gate arrays could drastically cut the cost of designing complex electronic devices.

###

Zhengzong Sun, a graduate student in Tour’s lab, was co-author of the paper with Yao; Tour; Natelson, a Rice professor of physics and astronomy; and Zhong, assistant professor of electrical and computer engineering.

The David and Lucille Packard Foundation, the Texas Instruments Leadership University Fund, the National Science Foundation, PrivaTran and the Army Research Office SBIR supported the research.

Read the abstract here: http://pubs.acs.org/journal/nalefd

High-resolution images are available for download here:
https://stage.media.rice.edu/images/media/NewsRels/0830_F2.jpg
https://stage.media.rice.edu/images/media/NewsRels/0830_F2a.jpg
https://stage.media.rice.edu/images/media/NewsRels/0830_F2b.jpg
https://stage.media.rice.edu/images/media/NewsRels/0830_F2c.jpg
https://stage.media.rice.edu/images/media/NewsRels/0830_F2d.jpg

NOTE: The first image (F2) is a key to the other four.

CAPTION: A 1k silicon oxide memory has been assembled by Rice and a commercial partner as a proof-of-concept. Silicon nanowire forms when charge is pumped through the silicon oxide, creating a two-terminal resistive switch. (Images courtesy Jun Yao/Rice University)

(Note: I recommend hitting the link for the first image — 0830_F2.jpg. It’s too big to run in this blog full-size, but it’s a great illustration of the chip.)

The new EPA auto fuel economy label

With hybrids and electric cars becoming more commonplace, the old miles-per-gallon rating just doesn’t cut it for fuel efficiency comparison shopping. So in steps the Environmental Protection Agency with a brand new label. Not sure exactly how clear this is at first glance, but it does offer more than just MPG information.

From the link:

All new cars and light-duty trucks sold in the U.S. are required to have a label that displays fuel economy information that is designed to help consumers make easy and well-informed comparisons between vehicles. Most people recognize the current label (or “window sticker”) by the gas tank graphic and city and highway Miles Per Gallon (MPG) information. EPA has provided fuel economy estimates in City and Highway MPG values for more than 30 years (see how fuel economy has changed).

EPA and the National Highway Traffic Safety Administration (NHTSA) are updating this label to provide consumers with simple, straightforward energy and environmental comparisons across all vehicles types, including electric vehicles (EV), plug-in hybrid electric vehicles (PHEV), and conventional gasoline/diesel vehicles. The agencies are incorporating new information, such as ratings on fuel economy, greenhouse gas emissions, and other air pollutants, onto the label as required by the Energy Independence and Security Act (EISA) of 2007.

The agencies are proposing two different label designs (see right) and are eager to gather public input. Specifically, which design, or design features, would best help you compare the fuel economy, fuel costs, and environmental impacts of different vehicles.  Submit a comment on the proposed labels.

For more information on the proposed fuel economy label redesign, please see the Proposed Rule, the proposed labels, and related documents.

And all that info isn’t enough, here’s the EPA’s release on the new labels.

(Hat tip — Potential Energy blog at Technology Review)

Memristor storage coming in 2013

Filed under: Business, Science, Technology — Tags: , , , , , — David Kirkpatrick @ 9:48 am

Of course, we’ll have to see if this tech is still state-of-the-art three years down the road.

From the link:

An electronic component that offers a new way to squeeze more data into computers and portable gadgets is set to go into production in just a couple of years. Hewlett-Packard announced today that it has entered an agreement with the Korean electronics manufacturer Hynix Semiconductor to make the components, called “memristors,” starting in 2013. Storage devices made of memristors will allow PCs, cellphones, and servers to store more and switch on instantly.

Making memories: This colorized atomic-force microscopy image shows 17 memristors. The circuit elements, shown in green, are formed at the crossroads of metal nanowires.
Credit: StanWilliams, HP Labs

Memristors are nanoscale electronic switches that have a variable resistance, and can retain their resistance even when the power is switched off. This makes them similar to the transistors used to store data in flash memory. But memristors are considerably smaller–as small as three nanometers. In contrast, manufacturers are experimenting with flash memory components that are 20 nanometers in size.

“The goal is to be at least double whatever flash memory is in three years–we know we’ll beat flash in speed, power, and endurance, and we want to beat it in density, too,” says Stanley Williams, a senior fellow at HP who has been developing memristors in his lab for about five years.

Nanotech making water more safe

This development can make a real quality of life difference in developing countries without running water and disaster areas, and it can make “roughing it” just a little bit less rough.

The release:

High-speed filter uses electrified nanostructures to purify water at low cost

IMAGE: This scanning electron microscope image shows the silver nanowires in which the cotton is dipped during the process of constructing a filter. The large fibers are cotton.

Click here for more information.

By dipping plain cotton cloth in a high-tech broth full of silver nanowires and carbon nanotubes, Stanford researchers have developed a new high-speed, low-cost filter that could easily be implemented to purify water in the developing world.

Instead of physically trapping bacteria as most existing filters do, the new filter lets them flow on through with the water. But by the time the pathogens have passed through, they have also passed on, because the device kills them with an electrical field that runs through the highly conductive “nano-coated” cotton.

In lab tests, over 98 percent of Escherichia coli bacteria that were exposed to 20 volts of electricity in the filter for several seconds were killed. Multiple layers of fabric were used to make the filter 2.5 inches thick.

“This really provides a new water treatment method to kill pathogens,” said Yi Cui, an associate professor of materials science and engineering. “It can easily be used in remote areas where people don’t have access to chemical treatments such as chlorine.”

Cholera, typhoid and hepatitis are among the waterborne diseases that are a continuing problem in the developing world. Cui said the new filter could be used in water purification systems from cities to small villages.

Faster filtering by letting bacteria through

Filters that physically trap bacteria must have pore spaces small enough to keep the pathogens from slipping through, but that restricts the filters’ flow rate.

IMAGE: This is professor of materials science and engineering Yi Cui.

Click here for more information.

Since the new filter doesn’t trap bacteria, it can have much larger pores, allowing water to speed through at a more rapid rate.

“Our filter is about 80,000 times faster than filters that trap bacteria,” Cui said. He is the senior author of a paper describing the research that will be published in an upcoming issue of Nano Letters. The paper is available online now.

The larger pore spaces in Cui’s filter also keep it from getting clogged, which is a problem with filters that physically pull bacteria out of the water.

Cui’s research group teamed with that of Sarah Heilshorn, an assistant professor of materials science and engineering, whose group brought its bioengineering expertise to bear on designing the filters.

Silver has long been known to have chemical properties that kill bacteria. “In the days before pasteurization and refrigeration, people would sometimes drop silver dollars into milk bottles to combat bacteria, or even swallow it,” Heilshorn said.

Cui’s group knew from previous projects that carbon nanotubes were good electrical conductors, so the researchers reasoned the two materials in concert would be effective against bacteria. “This approach really takes silver out of the folk remedy realm and into a high-tech setting, where it is much more effective,” Heilshorn said.

Using the commonplace keeps costs down

But the scientists also wanted to design the filters to be as inexpensive as possible. The amount of silver used for the nanowires was so small the cost was negligible, Cui said. Still, they needed a foundation material that was “cheap, widely available and chemically and mechanically robust.” So they went with ordinary woven cotton fabric.

“We got it at Wal-mart,” Cui said.

To turn their discount store cotton into a filter, they dipped it into a solution of carbon nanotubes, let it dry, then dipped it into the silver nanowire solution. They also tried mixing both nanomaterials together and doing a single dunk, which also worked. They let the cotton soak for at least a few minutes, sometimes up to 20, but that was all it took.

The big advantage of the nanomaterials is that their small size makes it easier for them to stick to the cotton, Cui said. The nanowires range from 40 to 100 billionths of a meter in diameter and up to 10 millionths of a meter in length. The nanotubes were only a few millionths of a meter long and as narrow as a single billionth of a meter. Because the nanomaterials stick so well, the nanotubes create a smooth, continuous surface on the cotton fibers. The longer nanowires generally have one end attached with the nanotubes and the other end branching off, poking into the void space between cotton fibers.

“With a continuous structure along the length, you can move the electrons very efficiently and really make the filter very conducting,” he said. “That means the filter requires less voltage.”

Minimal electricity required

The electrical current that helps do the killing is only a few milliamperes strong – barely enough to cause a tingling sensation in a person and easily supplied by a small solar panel or a couple 12-volt car batteries. The electrical current can also be generated from a stationary bicycle or by a hand-cranked device.

The low electricity requirement of the new filter is another advantage over those that physically filter bacteria, which use electric pumps to force water through their tiny pores. Those pumps take a lot of electricity to operate, Cui said.

In some of the lab tests of the nano-filter, the electricity needed to run current through the filter was only a fifth of what a filtration pump would have needed to filter a comparable amount of water.

The pores in the nano-filter are large enough that no pumping is needed – the force of gravity is enough to send the water speeding through.

Although the new filter is designed to let bacteria pass through, an added advantage of using the silver nanowire is that if any bacteria were to linger, the silver would likely kill it. This avoids biofouling, in which bacteria form a film on a filter. Biofouling is a common problem in filters that use small pores to filter out bacteria.

Cui said the electricity passing through the conducting filter may also be altering the pH of the water near the filter surface, which could add to its lethality toward the bacteria.

Cui said the next steps in the research are to try the filter on different types of bacteria and to run tests using several successive filters.

“With one filter, we can kill 98 percent of the bacteria,” Cui said. “For drinking water, you don’t want any live bacteria in the water, so we will have to use multiple filter stages.”

Cui’s research group has gained attention recently for using nanomaterials to build batteries from paper and cloth.

###

David Schoen and Alia Schoen were both graduate students in Materials Science and Engineering when the water-filter research was conducted and are co–lead authors of the paper in Nano Letters. David Schoen is now a postdoctoral researcher at Stanford.

Liangbing Hu, a postdoctoral researcher in Materials Science and Engineering, and Han Sun Kim, a graduate student in Materials Science and Engineering at the time the research was conducted, also contributed to the research and are co-authors of the paper.

« Newer Posts

The Silver is the New Black Theme. Blog at WordPress.com.

Follow

Get every new post delivered to your Inbox.

Join 25 other followers