David Kirkpatrick

August 13, 2008

All-nanowire loaded chip

Just after blogging on UC Berkeley’s recent research gift from Applied Materials, this story appears in the inbox. The university has created the first integrated circuit using nanowires as both sensors and electronic components.

This technology has a lot of possibities, even beyond silicon chips.

From the second link:

Nanowires make good sensors because their small dimensions enhance their sensitivity. Nanowire-based light sensors, for example, can detect just a few photons. But to be useful in practical devices, the sensors have to be integrated with electronics that can amplify and process such small signals. This has been a problem, because the materials used for sensing and electronics cannot easily be assembled on the same surface. What’s more, a reliable way of aligning the tiny nanowires that could be practical on a large scale has been hard to come by.

A printing method developed by the Berkeley group could solve both problems. First, the researchers deposit a polymer on a silicon substrate and use lithography to etch out patterns where the optical sensing nanowires should be. They then print a single layer of cadmium selenide nanowires over the pattern; removing the polymer leaves only the nanowires in the desired location for the circuit. They repeat the process with the second type of nanowires, which have germanium cores and silicon shells and form the basis of the transistors. Finally, they deposit electrodes to complete the circuits.

University of California, Berkeley, researchers were able to create an orderly circuit array from two types of tiny nanowires, which can function as optical sensors and transistors. Each of the circuits on the 13-by-20 array serves as a single pixel in an all-nanowire image sensor.

Squared away: University of California, Berkeley, researchers were able to create an orderly circuit array from two types of tiny nanowires, which can function as optical sensors and transistors. Each of the circuits on the 13-by-20 array serves as a single pixel in an all-nanowire image sensor.

About these ads

Leave a Comment »

No comments yet.

RSS feed for comments on this post. TrackBack URI

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

The Silver is the New Black Theme. Create a free website or blog at WordPress.com.

Follow

Get every new post delivered to your Inbox.

Join 26 other followers

%d bloggers like this: